《小数的性质》教案
作为一名老师,编写教案是必不可少的,教案是实施教学的主要依据,有着至关重要的作用。优秀的教案都具备一些什么特点呢?以下是小编整理的《小数的性质》教案,欢迎大家借鉴与参考,希望对大家有所帮助。
《小数的性质》教案1
【教学内容】
人教课标版小学四年级下册第58、59页的内容:小数的性质
【学情分析】
小数的性质是义务教育课程标准实验教科书四年级下册第58、59页的内容。是在学生学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且为后面的小数的大小比较、小数四则计算打下坚实的基础。学生对于整数的知识已经有了较多的了解,对于整数的末尾添上“0”或者去掉“0”,会引起整数大小的变化有了一定的认识。但小数的性质却与整数不一样,在小数的末尾添上0或者去掉“0”,小数的大小不变,因此,整数的这部分知识,会对小数性质的学习产生负面的影响。
【教学目标】
知识与技能:让学生在自主探究、合作交流中理解和掌握小数的性质,知道化简小数和改写小数的方法。
过程与方法:培养学生观察、比较、抽象和归纳概括的能力。
情感态度与价值观:激发学生积极主动的合作意识和探索精神,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,积极主动的参与数学活动。
【教学重难点】
重点:理解和掌握小数性质的含义。
难点:小数基本性质归纳的过程。
【教法与学法】
1、利用迁移规律,让学生从形象思维逐步过渡到抽象思维,通过直观推理、自主探究、合作交流让学生理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。
2、让学生体验数学问题的探究性和挑战性,激发学习数学的兴趣,主动参与教学活动。
3、培养学生共同合作,相互交流的学习方法。
【教学准备】
教师:自作课件
学生:收集的标签彩笔直尺和纸条
【教学过程】
一、创设情境,导入新课
1、师:课前老师让同学们回忆生活,观察商品的标价签,并记录1—2种商品的价格,请谁来汇报一下?
生:2、00元,师:是多少钱呢?生:2元。
生:3、50元。师:是多少钱?生:3元5角
师:夏天的时候同学们都爱吃冷饮,老师了解到校门口左边的商店三色标价是2、5元,右边一家则是2、50元,那你们去买的时候会选择哪一家呢?为什么?
师:为什么2、5元末尾添个0大小不变呢?究竟可以添几个零呢?这节课我们就来研究这一方面的知识。
板书课题:小数的性质
设计意图:联系生活实际,达到知识的迁移。
二、提出问题、探索新知
1、出示例1:下面请同学们利用直尺和桌面上的三张纸条分别量出0、1米,0、10米和0、100米长的纸条,各打上记号。各小组合作共同完成。
老师巡视并引导学生观察米尺图
2、各小组汇报:结合学生回答,教师板书:
0、1米是1/10米,就是1分米
0、10米是10/100米,就是10厘米
0、100米就是100/1000米,就是100毫米
因为1分米=10厘米=100毫米
所以0、l米=0、10米=0、100米
教师小结:这三个数量虽然各不相同,但表示大小相等、
设计意图:学生根据小数的意义,从“0、l米、0、10米、0、100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识。
3、观察比较:教师指着“0、l米=0、10米=0、100米”这个等式,标出思考箭头先让学生从左往右观察、比较,你们发现了什么?
根据学生的回答板书:在小数的末尾添上0,小数的大小不变。再标出思考箭头,让学生从右往左观察,又发现什么规律,补充板书:小数的末尾去掉“0”。
教师强调:我们如果遇到小数末尾有“0”的时候,一般可以去掉末尾的“0”,把小数化简、小数中间的0不能去掉、
师质疑:那整数有这个性质吗?
学生分小组讨论,并举例证明得出结论。
(师强调出小数与整数的区别)
设计意图:把静态的知识结论转化为动态的'求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固,不但知其然,而且知其所以然。同时,还培养了学生归纳概括的能力。
4、练一练:
(1)多媒体出示58页做一做:比较0、30与0、3的大小
师:你认为这两个数的大小怎样?(让学生先应用结论猜一猜)
(2)师:想一下你用什么办法来比较这两个数的大小呢?(给学生独立思考的时间,可以进行小组讨论合作)
(3)在两个大小一样的正方形里涂色比较。
汇报结论:0、3=0、30
师质疑:小数由0、3到0、30,你看出什么变了?什么没变?你从中发现了什么?(平均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变,得出0、3=0、30。)
设计意图:学生的思维从形象思维逐步过渡到抽象思维,达到突破难点的目的。放手让学生探索、验证,适时引导学生提出问题,并解决问题。
5、小数性质应用、【继续演示课件“小数的性质”】
(1)教学例3:把0、70和105、0900化简、
思考:哪些“0”可以去掉,哪些“0”不能去掉?
105、0900中“9”前面的“0”为什么不能去掉?
(0、70=0、7;105、0900=105、09)
教师强调:末尾和后面不同。
(2)教学例4:不改变数的大小,把0、2、4、08、3改写成小数部分是三位的小数、学生独立完成,全班共同订正。
(0、2=0、200;4、08=4、080;3=3、000)
思考:“3”的后面不加小数点行吗?为什么?
(3)你在哪些地方看到过小数末尾添0的数?(商场的标价上)
三、巩固深化,拓展思维
1、完成59页的做一做。
重点指导学生说一说为什么有些“0”不能去掉和
说一说为什么有些数的末尾添上“0”,原数就发生了变化、
2、挑战自我。
(1)谁能只动三笔,让下面三个数之间划上等号?
6020 = 602 =60200
(2)每人写几个和3、200相等的数、
设计意图:挑战自我的习题留给学生课后去完成,让学生的学习活动从课堂延伸到课后。
四、全课小结
1、这节课你有哪些收获?
2、你对自己或同学有什么评价?
五、布置作业、
完成练习十1—3题。
板书设计:
小数的性质
例1 1分米= 10厘米= 100毫米
从右往左从左往右
0、1米= 0、10米= 0、100米
小数的末尾添上0或者去掉0,小数的大小不变。
0、3= 0、30 =0、300
例2化简小数。
0、70= 0、7 105、0900=105、09
例3不改变数的大小,把下面各数写成三位小数。
0、2=0、200 4、08=4、080 3=3、000
《小数的性质》教案2
一、再现旧知,回顾整理
课件出示:请把下列各数分类。相信你一定很棒。
0 7.523 6.8 69 101 1.25 384 0.001
教师根据学生口答板书:
整数: 0 69 101 384
小数:7.523 6.8 1.25 0.001
教师谈话:今天这节课我们重点复习小数的有关知识。
二、小组交流,自我梳理。
回想一下,你学过小数的哪些知识?与之相应的整数之间有什么联系?并请举例说明。
学生分小组讨论交流。
教师在学生整理知识时要参与其中,给予必要的方法指导,引导学生相互学习。
三、全班交流,构建成网。
1、班内交流,根据学生交流教师相机整理板书:
整数 小数
意义
(0和自然数的统称…… )←----------→(表示一个数的…… )
计数单位
(……千、百、十、个)←------------→(十分之一、百分之一……)
读写法
(从高位…… )←------------→(整数部分……)
比较大小
(先比较最高位……)←------------→(先比较整数部分……)
运算定律
(a+b=b+a…… )←------------→(a+b=b+a…… )
加减法
(相同数位对齐……)←------------→ (小数点对齐……)
(后来板书)教师小结。
2、教师谈话:小数意义与整数有着这样密切的联系,那么小数的加减法与整数有什么样的联系呢?
①课件出示:用竖式计算
2.85+1.08 2.7+1.85 21.09—4.89 13—8.87
独立计算,班内交流,交流时让学生说一说计算小数加减法要注意什么?(完成上面的板书)
②课件出示:先认真分析每道题目的数据特征,然后独立计算,交流时说一说为什么这样算。
12.25+36+7.75 13.05+12.38—4.05
5.6—0.71—0.29 19.65—(3.98+6.65)
四、练习应用,巩固提高。
(一) 填空
1、由7个0.1、3个0.001和5个1组成的数是( ),读作( )。
2、一个数缩小100倍是0.8,这个数是( )
3、将下列各数按顺序排列。
①0.58 0.85 0.085 0.058 0.8 0.805
( )<( )<( ) <( )<( )<( )
②0.91米 1.0米 10.1米 87厘米 0.69米 9分米
( )>( )> ( ) >( )>( )>( )
4、把一个4位小数保留三位小数后是5.690,这个小数最小是( ),最大是( )。
5、96.4的小数点向左移动一位,再向右移动三位,结果是( )
(二)火眼金睛辨对错。
1、4.60和4.6大小相等,精确度也相等。( )
2、小数都比整数小。( )
3、10个百分之一是一个千分之一。( )
4、0.9595保留三位小数是0.960。( )
5、把0.96的'小数点去掉,原数就扩大了1000倍。( )
(三)选一选。
1、把48.5 的小数点移到最高位数字的左边,这个数缩小到它的( )
①1/10②1/100③1/1000
2、下列各数中去掉“0”而大小不变的是( )
① 2430 ②2.043 ③2.430
3、6.5时是6时( )分
① 5 ②50 ③30
4、大于0.2而小于0.3的小数有( )
①只有0.29 ②没有 ③无数个
5、一个数十位、十分位和千分位上都是8, 其余各位上都是0,这个数写作( )
① 18.808 ②80.808 ③8.088
(四)动脑思考。
□0.□9,在□里填数,使其符合下列要求。
①使这个数最大,这个数是( )
②使这个数最小,这个数是( )
③使这个数最接近31,这个数是( )
板书设计 :
小数的意义和性质
整数: 0 69 101 384
小数:7.523 6.8 1.25 0.001
课后反思:
《小数的性质》教案3
教学内容
教科书第80~81页,练习十六的习题.
教学目的
1.使学生掌握整除、约数和倍数、质数和合数等概念,知道它们之间的联系和区别.掌握能被2、5、3整除的数的特征.会分解质因数.会求最大公约数和最小公倍数.
2.使学生在理解的基础上掌握分数、小数的基本性质.
教学过程
一、数的整除
1.整除的意义.
教师:想一想,什么叫做整除?指名回答.
教师进一步强调:整除中说的数是什么数?(整数.)
商是什么数?(整数.)有没有余数?(没有余数.)
教师:什么叫做除尽?(两数相除,余数是0.)
整除和除尽有什么联系和区别?指名回答.教师根据学生的回答,整理出下表:
被除数 除数 商 余数
整除 整数 不等于O的整数 整数 O
除尽 数 不等于O的数 数 O
教师:可以看出整除是除尽的一种特殊情况.
2.能被2、5、3整除的数的特征.
教师:我们已经学过能被2、5、3整除的数的特征,同学们还记得吗?指名说一说.然后提问:
能被2、5整除的数,在判别方法上有什么共同的地方?(都根据个位数进行判别.)
能被3整除的数,在判别方法上与能被2、5整除的数有什么不同?气根据各个数位上的数之和进行判别.)
教师:什么叫做奇数?什么叫做偶数?
根据什么来判断一个数是奇数还是偶数?
3.约数和倍数.
教师:根据整除的概念可以得到约数和倍数的概念.什么叫做约数?什么叫做倍数?指名说一说.(如果a能被b整除,a就叫做b的倍数,b就叫做a的约数.)为了使学生进一步明确约数和倍数是相互依存的,教师可以接着提问:
能说6是约数,15是倍数吗?应该怎么说?
教师说明:在研究约数和倍数时,我们所说的数一般只指自然数,不包括0.
教师:一个数的约数的个数是怎样的?(有限的..)
其中最小的约数是什么数?最大的约数是什么数?(1,这个数本身.)
一个数的倍数的个数是怎样的?(无限的.)
其中最小的倍数是什么数?(这个数本身.)
做练习十六的第2题.让学生直接做在书上.教师可以说明做的方法:在含有约数2的数下面写2,在3的倍数下面写3,在能被5整除的数下面写5,然后再进行判断.集体订正.
4.质数和合数.教师指名说一说质数、合数的概念.可有意识地让学习有困难的学生说,其他同学进行补充.
教师:怎样判断一个数是质数还是合数?(检查这个数有约数的个数,或查质数表.)指名说一说30以内有哪些质数.
让学生进行判断:一个自然数如果不是质数,那么一定是合数.学生判断后,教师说明:1既不是质数,也不是合数.
5.分解质因数.
指名说一说质因数、分解质因数的含义.
做练习十六的第5题.学生独立解答,教师巡视,集体订正.
6.公约数、最大公约数和公倍数、最小公倍数.
(1)复习概念.
教师:什么叫做公约数?什么叫做最大公约数?(几个数公有的约数,叫做这几个数的公约数;其中最大的一个叫做这几个数的最大公约数.)怎样求几个数的最大公约数?让学生举例说明.
什么叫做公倍数?什么叫做最小公倍数?怎样求几个数的最小公倍数?让学生举例说明.
教师:什么样的数叫做互质数?(公约数只有1的两个数叫做互质数.)
质数和互质数有什么区别?(质数是一个数,只有1和它本身两个约数;互质数是两个数,只有公约数1.)
两个不同的质数一定互质吗?(两个不同的质数一定互质.)
互质的两个数一定都是质数吗?(不一定,如4和9互质,4、9都是合数.)
(2)课堂练习.
做练习十六的第1题.先让学生独立判断,集体订正时,让学生说一说判断的理由.
做练习十六的第4题.学生独立解答,教师巡视,集体订正.教师根据前面的教学,整理出教科书第80页的概念联系图.也可以把该图变化成如下形式.
《小数的性质》教案4
[课程标准要求]
课标对小数的性质这部分内容指出引导学生通过动手、观察、经历自主发现小数的性质的过程,并总结概括出小数的性质。自主发现是行为动词,动手、观察是行为条件,行为程度是指学生发现小数的性质,并总结概括出小数的性质。
[学情分析]
本课学习内容,看似容易,但理解起来有点难度。因此学生将在教师设计的量一量、说一说、比一比、涂一涂等活动中开展学习活动。通过合作交流、观察、总结发现小数的性质,并应用小数的性质化简和改写指定位数的小数。
[学习目标]
1、学生以小组合作为单位,通过动手操作、观察、比较、交流、归纳概述出小数的性质。
2、运用小数的性质能正确地化简、改写小数。
教学重点理解掌握小数的性质。
教学难点
探索发现并概括出小数性质的过程。
[评价任务]
通过练习和例3化简例4改写小数检验目标1、2的教学完成情况
[资源与建议]
1、教材分析:这部分内容是在学生学习了分数、小数的初步认识的基础上,进一步理解了小数的意义,认识了小数的计数单位,会熟练地读、写小数后教学的,本课的知识点不多,但学生理解起来有点难度,因此教材设计了让学生自主探究的学习内容,教材先通过例1和例2教学小数的性质,即让学生通过比较0.1米、0.10米、0.100米的大小,比较0.3和0.30的大小,引导学生归纳出小数的性质。然后,又安排例3和例4对小数的性质加以应用。运用一正一反两个例题,即一个是去掉小数末尾的“0‘把小数化简,一个是在小数末尾添上”0“把小数改写成指定位数的小数,来使学生学会小数性质的应用。学好这部分内容是为今后学习小数的四则运算打基础的。
2、教具:课件
学具:米尺,方格图,殊为顺序表
授课对象:四四班学生
授课地点:考务办公室
3、本课的学习按以下流程进行
4、本节课的重点是理解小数性质的含义,难点小数性质归纳的过程.突破方法:让学生在大量感性体验的基础上,自己试着归纳总结。
[学习过程]
一、创设情境,引导探索
1、谈话激趣
昨天因为买冰激淋的事难住了我女儿,大家来帮帮她好吗?同一种冰激凌金阳光超市标价2.5元,家家乐超市标价是2.50元。那家便宜些呢?2.5元是多少钱?2.50元呢?它们什么关系?(相等)(结合学生的回答板书)建议我女儿去那家买?(都行)通过比钱数我们知道了2.5等于2.50请观察这两个小数,2.5是怎样变成了2.50的?(在2.5的末尾添上0)
3、为什么在2.5元的末尾添个0大小不变呢?究竟可以添几个零呢?是不是什么数末尾添零大小都不变呢?请看老师这里有一个小数0.1我在它的末尾添一个零,它的大小变吗?添两个零呢?(不变)我们想个什么办法验证一下?(加个单位)加个米好吗?
二、合作探究,探索新知
(一)学生量出0.1米0.10米0.100米纸条的长度,通过比较发现它们长度相等。
下面我们以小组为单位来试一试,请看合作要求:
出示例1比较0.1米0.10米0.100米的大小。
要求:1、组长分工分别量出0.1米、 0.10米、0.100米纸条的长度。
2、把量出的0.1米、 0.10米、0.100米纸条的长度放在一起比一比看你们有什么发现?
(合作并比较)
0.1米是多长?(1分米)你是怎么想的?0.10米呢?(10厘米)你是怎么想的?0.100米呢?(100毫米)你是怎么想的?
汇报交流
生:我量的是0.1米。0.1米是十分之一米,也就是1分米。我量出1分米长的纸条就是量出了0.1米长的纸条。
生:我量的是0.10米。0.10米是10个百分之一米,也就是10厘米。我量出10厘米长的纸条就是量出了0.10米长的纸条.
生:我量的是0.100米。0.100米是100个千分之一米,也就是100毫米。我量出100毫米长的纸条就是量出了0.100米长的纸条
生:我们发现1分米、10厘米、和100毫米的纸条都一样长。
师小结(看课件)因为1分米=10厘米=100毫米,所以0.1米=0.10米=0.100米。
同学们我们通过小组合作量0.1米、 0.10米、0.100米的长,得出0.1米=0.10米=0.100米。如果老师再给你一组小数你也能想办法比较它们的大小吗?
(二)学生通过在正方形纸上涂0.3和0.30比较发现它们大小相等。
出示例2:比较0.3与0.30的大小
师:你认为这两个数的大小怎样?(一样)想一下你可以用什么办法来比较这两个数的大小呢?老师给同学们准备了两个大小一样的正方形。请同桌两人合作利用它们试一试
合作要求;
1、两人分工分别在同样大小的正方形纸上涂出0.3和0.30。并互相说一说你是怎么想的?
2、把涂出的0.3和0.30的正方形纸放在一起比一比看你们有什么发现?
汇报:
(1)我涂的是0.3,它是把1个正方形平均分成10份,我涂3份,0.3就是3个十分之一.
(2)我涂的是0.30,它是把1个正方形平均分成100份,我涂30份,0.30就是30个百分之一.也就是3个十分之一.
(3)我的发现是0.3等于0.30
师:通过涂小数0.3和0.30涂出的什么相同?什么不同?(平均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变。)从中你发现了什么?(0.3与0.30相等.)
(三)引导观察,得出小数的性质
指2.5元=2.50元;0.1米=0.10米=0.100米;0.3=0.30引导学生观察:我们来看这几组等式,从左往右观察2.50元同2.5元相比;0.10米同0.1米相比0.30同0.3相比。小数有什么变化?
生:我发现小数的最后面加了0。生:小数后面多了一个0(哪儿多个0呢?)那小数大小呢?
生:没有变化。0.100米同0.1米相比有什么变化?小数的大小呢?
通过以上观察你发现了什么?也就是板书:小数的末尾依次添上”0“
学生归纳:在小数的末尾添上”0“,小数的大小不变。
从右往左观察,2.5元同2.50元相比;0.10米同0.100米相比;0.3同0.30相比;0.1米同0.100米比小数又有什么变化呢?
生:小数后面依次少了一个0生:小数的末尾,板书:去掉”0“那小数的大小呢?生:没有变化。通过观察你又发现了什么?生:在小数的末尾去掉0,小数的大小不变
师:综合刚才的观察,你发现了什么?
师板书:小数的末尾添上0或去掉0,小数的大小不变。这就是小数的性质。
生齐读一遍.板书课题:小数的性质
(四)进一步探究,加深感知
师:无论添0还是去0都是在哪儿添或去才能使小数的大小不变呢?(小数的末尾)在整数的末尾添0去0数的大小变吗?(变)现在你知道为什么在2.5元的末尾添一个0仍然和2.5元相等吗?(2.5是小数)在1的末尾添上0它的大小变不变呢?(变)为什么?(因为1是整数)整数有这个性质吗?(没有)在2.5这个小数5的前面添上0它的大小变吗?(变)为什么?(不是小数的末尾)哪儿才是小数的末尾?
注意:小数的性质是在”小数“的”末尾“添上0或去掉0,小数的大小不变。你认为小数的性质里哪些词很重要?(末尾)
齐读一边小数的性质.
根据小数的性质小数的末尾是可以添上”0“或去掉”0“的,并且小数的大小不变。请同学们来看。
练习
不改变数的大小,下面数中的哪些”0“可以去掉,哪些”0“不能去掉?为什么?先来看3.90米,(3.90 500 20.20问为什么?)
3.90米,0.30元,500米,1.80元
0.70米,0.04元,600千克,20.20米
三、联系生活,灵活运用
1.教师结合板书内容讲解性质的运用。
同学们像3.90米、0.30元等这些数根据小数的性质去掉它们末尾的0,小数的`大小不变。根据小数的性质去掉小数末尾的0也就是把小数进行了化简。你能化简下面小数吗?
化简下面各小数:
例3 0.70 105.0900
小数里的其他零可以去掉吗?(不能)
一般计算时,遇到小数末尾有0,都要化简。来看下面这些数化简后分别是多少?
练习
(2)同学们根据小数的性质去掉小数末尾的0就把小数进行了化简。有时根据需要,我们还要根据小数的性质在小数的末尾添上0;把小数改写成指定位数的小数。
出示:例4不改变数的大小,把0.2、4.08改写成小数部分是三位的小数,怎样改写?
把3改写成小数部分是三位的小数,怎样改写?(想一想超市里2元的商品标价时还怎么标:2.00元)
提醒:把整数改写成小数形式,在整数的个位右下角点上小数点,再添上”0“。能不能在小数中间添零?不能,要使小数的大小不变只能在小数的末尾添”0“
请把这几个数改写成三位小数。
练习
应用小数的性质我们可以化简一个小数还可以对一个小数进行改写。请同桌两人讨论一下应用小数的性质时,要注意什么?
同桌讨论:应用小数的性质时,要注意什么?(无论添0还是去0都是在小数末尾)
请看这三个数0.70 4.08 0.310 0.20去掉0,数的大小怎样?4.08去掉0,会怎么样?0.310可以添上0吗?
四、全课总结
今天我们学习了什么内容?什么是小数的性质?小数的性质有什么用?应用小数的性质时,要注意什么?2.5的末尾可以添上多少个”0“呢?
五、看课本
我们今天学的内容在课本第58、59页,请把课本看一下把该画的内容画下来。
六、多层练习,巩固深化
(一)我是小法官(打”√“,错的打”ד)
1、把0.50 0.0600的小数点后面的”0“去掉,小数的大小不变。()
2、在5.3的末尾添上三个”0“,它的大小不变。()
3、一个数末尾添上”0“或者去掉”0“,大小不变。()
(二)把相等的数连起来。
2.70 4.400
31.0100 0.005
72.060 2.07
0.0050 31.01
4.40 72.60
(三)给下面的物品加上标签(以元作单位,用两位小数表示)。
水杯3元2角
铅笔6角
板书设计:
小数的性质
2.5元=2.50元
1分米=10厘米=100毫米
0.1米=0.10米=0.100米
0.3=0.30
小数的末尾添上”0“或去掉”0“,小数的大小不变。
《小数的性质》教案5
教学目标:
1、初步理解小数的基本性质,并应用性质化简和改写小数。
2、运用猜测、操作、检验、观察、对比等方法,探索并发现小数的性质,养成探求新知的良好品质。
3、感受透过现象看本质的过程以及数学在实际生活中的重要作用,体验问题解决的情趣。
教学重点:
让学生理解并掌握小数的性质。
教学难点:
能应用小数的性质解决实际问题.
教学过程:
一、创设情境,引导探索
1师:夏天的天气非常炎热,孩子们你们爱吃雪糕吗?老师对学校附近雪糕的价格做了一个小调查,你们想了解一下吗?老师了解到校门口左边的商店雪糕的价格是0.5元,右边一家则是0.50元,那你们去买的时候会选择哪一家呢?为什么?
师:为什么0.5元末尾添个0大小不变呢?究竟可以添几个零呢?这节课我们就来学习小数的性质。(板书课题:小数的性质)
二、探究新知、课中释疑
1.教学例1
比较0.1m 0.10m 0.100m的大小
师:想一想括号里填上什么单位,才能使等式成立?
1()=10()=100()
生汇报(重点讲解:1分米=10厘米=100毫米)
你能把它们改写成用米做单位的小数的形式吗?
根据学生回答归纳演示:1分米是1/10米,写成0.1米
10厘米是10个1/100米,写成0.10米
100毫米是100个1/1000米,写成0.100米
并板书:01米0.10米0.100米
那0.1米、0.10米、0.100米之间大小有什么关系呢?
3)指导看黑板:
1分米= 10厘米= 100毫米
0.1米= 0.10米= 0.100米
4)观察比较:教师指着“0.l米=0.10米=0.100米”这个等式,标出思考箭头先让学生从左往右观察、比较,你们发现了什么?
5)根据学生的回答板书:在小数的末尾添上0,小数的大小不变。再标出思考箭头,让学生从右往左观察,又发现什么规律,补充板书:小数的末尾去掉“0”,小数的大小不变。
是不是所有的小数都有这个性质呢?这是不是一个特例?我们还需再验证一下。
2.教学例2
比较0.3和0.30的大小
1)师:你认为这两个数的大小怎样?(让学生先应用结论猜一猜)
2)师:想一下你用什么办法来比较这两个数的大小呢?(利用学具,小组讨论合作)
3)在两个大小一样的正方形里涂色比较。
汇报结论:0.3=0.30
4)师质疑:小数由0.3到0.30,你看出什么变了?什么没变?你从中发现了什么?(平均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变,得出0.3=0.30。)
5)师:同学们,你们真了不起,通过动手操作验证得出了这个性质,这就是我们今天学习的内容-小数的性质(课件出示)
小数的性质:小数的末尾添上“0”或去掉“0”,小数的'大小不变。
6)认真读这句话,你认为那些字是非常关键或者必不可少的?为什么?
生:末尾,因为中间的0是不能随意去掉的,去掉后就改变了小数的大小。
3.小数的化简
师:根据小数的性质,当遇到小数末尾有0时,一般可以去掉末尾的0,这就是小数的化简,你想试试看看吗?(课件出示例3)
把0.70和105.0900化简.
105.0900中“9”前面的“0”为什么不能去掉?
(0.70=0.7;105.0900=105.09)
教师强调:末尾和后面不同。
师:完成教材39页“做一做”的第1题(学生独立完成,全班订正)
4.小数的应用
1)师:利用小数的性质不仅可以化简小数,有时根据需要,可以在小数的末尾添上0;还可以在整数的个位右下角点上小数点,再添上0,把整数改写成小数的形式,这就是小数的改写,下面我们学习例4
2)不改变数的大小,把0.2、4.08、3改写成小数部分是三位的小数.学生独立完成,全班共同订正。
(0.2=0.200;4.08=4.080;3=3.000)
思考:“3”的后面不加小数点行吗?为什么?
3)师:完成教材39页“做一做”的第1题(学生独立完成,全班订正)
三、巩固深化,拓展思维
师:同学们的表现真棒,为了加大难度,老师设计了闯关游戏,你们有信心接受老师的挑战吗?
挑战一:判断
挑战二:连线
挑战三:智力大比拼
四、课堂小结
这节课你有哪些收获?
五、布置作业
完成练习十1-3题。
《小数的性质》教案6
教学内容:
教科书第58-59页例1—例3,及“做一做”。
教学目标:
1.初步理解小数的基本性质,会运用小数的基本性质进行小数的化简和改写。
2.运用猜测、检验、观察、对比等方法,探索并发现小数的性质。
3.培养学生动手操作的能力。
教学重点、难点:
1.教学重点:让学生理解和掌握小数的性质。
2.教学难点:让学生抽象概括小数的性质。
教学过程:
一、 创设问题情境,鼓励大胆猜测。
1.通过商品标价2.50元和3.00元这两个小数尾末有零来引起思考,自然地引出两个问题:0.1米、0.10米、0.100米,它们大小相等吗?0.30和0.3呢?
2.猜一猜。
二、 利用工具,检验猜测。
师:老师给每个学习小组准备了一些工具(一把米尺,一张数位顺序表,两张方格纸),请你们利用这些工具来检验刚才的猜测是对还是不对。先请你们四人一组,选一选、议一议:你们选择哪种工具,准备怎样来验证?
学生动手操作、检验:
⑴ 学生利用直尺验证:0.1米是1分米,0.10米是10厘米,0.100米是100毫米,他们在尺子上所表示的长度都是相等的,所以0.1米=0.10米=0.100米。
⑵ 学生利用数位顺序表验证:把0.30和0.3写在数位顺序表中,从数位顺序表中看出,它们的位数虽然不同,“3”所处的位置相同,所以0.30=0.3。
⑶ 学生利用正方形图验证:0.30是百分之三十,0.3是十分之三。从平均分成100份的正方形图中取其中的30份,就表示0.30。从平均分成10份的正方形图中其中3份,就表示0.3。从图中很明显的看出0.30=0.3。启发学生想一想:十个百分之一是一个十分之一,三十个百分之一是三个十分之一,所以0.30=0.3。
三、 观察比较,探究规律。
从刚才的操作中,我们已经知道:0.1米=0.10米=0.100米,0.30=0.3。下面请大家观察这两个等式,什么不变,什么变了?为什么数变了后数的大小不变?
四、 概括总结,揭示性质。
⑴ 谁能用一句话归纳出这个规律?这个规律就叫做“小数的性质”。
⑵ 请大家一起读“小数的性质”
五、 学生质疑。
六、 运用性质,化简改写。
⑴ 学了小数的基本性质有什么用呢?请大家自学课本例3。想一想:什么叫化简?什么叫改写?它们的根据分别是小数性质中的哪一句?并举例说明。
⑵ 教学例4
出示例4:不改变数的大小,把0.2、4.08、3改成小数部分是三位的小数。
①问:0.2和4.08各是几位小数,要把它们改成三位小数应在小数的哪部分添上“0”?各应添上几个“0”?为什么?
②问:整数3改写三位小数,在3的'后面添上三个“0”写作3000,对吗?为什么?那么应该怎样写?
③学生汇报结果,师板书:0.2=0.200,4.08=4.080,3=3.000。
七、 巩固提高,升华知识。
⑴ 完成课本“做一做”的题目。
⑵摆数游戏:每个小组利用老师发给的五张数字卡片,按要求摆数:
①用五张卡片摆一个数,这个数中的两个“0”都能去掉。
②用五张卡片摆一个数,这个数中的两个“0”一个能去掉,一个不能去掉。
想一想:怎样摆才能既不重复又不遗漏。
八、 交流收获,反思评价。
通过这节课的学习,你有什么收获?学会了哪些解决问题的方法?这些方法对今后的学习有什么帮助?
九、 布置作业:
练习二十一的第1—6题。
十、 板书设计:
小数的性质
例1:比较0.1米、0.10米、0.100米的大小
1分米=10厘米=100毫米
0.1米=0.10米=0.100米
例2:0.70=0.7 105.0900=105.09
例3:0.2=0.200 4.08=4.080 3=3.000
《小数的性质》教案7
教学目标
1、引导学生知道、掌握小数的性质,能利用小数的性质进行小数的化简和改写。
2、培养学生的动手操作能力以及观察、比较、抽象和归纳概括的能力。
3、培养学生初步的数学意识和数学思想,使学生感悟到数学知识的内在联系,同时渗透事物在一定情况下可以相互转化的观点。
教学重点
让学生理解并掌握小数的性质。
教学难点
能应用小数的性质解决实际问题。
教学过程
一、激趣导入
1、小组交流“商品标价记录单”,请两名学生上来展示。
2、电脑出示1:某超市手套、毛巾的标价,导入新课。
(在某超市商店里,老师看到:手套每双2.50元,毛巾每条2.5元。这里的2.50元、2.5元分别是( )元( )角,它们的价钱相同,为什么写法可以不同呢?这是小数的一个重要性质,是我们今天要学习的`内容,并板书“小数的性质”。)
3、揭示学习目标。
问:看到“小数的性质”这个课题,你认为这节课我们要学习什么内容?(结合学生回答,板书“性质”、“应用”)
二、探究新知
(一)理解小数的性质
1、做一做 做一做 1,得出 0.30=0.3
做一做 2,得出0.6=0.60=0.600
2、引导观察(思考讨论)0.6=0.60=0.600
(1)从左往右看,小数末尾有什么变化?小数大小有什么变化? (2)从右往左看,小数末尾有什么变化?小数大小有什么变化?你能得出什么结论?
(启发学生归纳出:在小数的末尾填上“0”,小数的大小不变;在小数的末尾去掉“0”,小数的大小不变。)
3、归纳小数的性质:
通过研究,你能把上面的两个结论归纳成为一句话吗?
教师概括:在小数的末尾添上“0”或者去掉“0”,小数的大小不变。这叫做小数的性质。
(在整数的末尾添上或去掉“0”,整数的大小会有什么变化?)
4、辨别:下面各数中的“
0”,哪些“0”是属 于小数末尾 的“0”。
(电脑显示)
(二)小数的性质应用
(1)教学例1。
①设问导入。问:你认为小数的性质有什么作用?学生很容易回答出小数性质的第一个作用。教师强调,根据这个性质,遇到小数末尾有0的时候,一般地可以去掉末尾的0,把小数化简。 (板书“化简”)
②投影出示例1,让学生尝试练习。
把0.90和205.0800化简
思考:哪些“0”可以去掉,哪些“0”不能去掉?
205.0800中“8”前面的“0”为什么不能去掉?
(0.90=0.9;205.0800=205.08 )
完成“练一练” 第1题
(2)教学例2。
①让学生解答导入新课中提出的问题,结合学生回答,教师说明:利用小数的性质,根据需要可以“把一个数改写成具有指定小数位数的小数”。(板书“改写”)
②投影出示例2,学生尝试练习。
不改变数的大小,把0.3、4.06、8改写成小数部分是三位的小数。
(0.3=0.300; 4.06=4.060; 8=8.000)
思考:“8”的后面不加小数点行吗?为什么?
完成“练一练” 第2题
③ 讨论:改写小数时一定要注意什么?
改写小数时一定要注意下面三点: A.不改变原数的大小; B.只能在小数的末尾添上0; C.把整数改写成小数时,一定要先在整数个位右下角点上小数点后再添0 。
(三)学生看书质疑。
三、巩固练习
1、练习十七 第1题
重点指导学生说一说为什么有些“0”不能去掉的。
2、练习十七 第2题
重点指导学生说一说为什么有些数的末尾添上“0”,原数就发生了变化。
3、综合练习 (电脑显示)
四、课末回顾、反思
《小数的性质》教案8
教学内容:教材p39页例3,例4.练习十
教学目标
知识与技能:通过自主探究学会小数的化简和改写小数。
过程与方法:运用所学知识解决问题,养成探求新知的良好品质。
情感态度与价值观:感受透过现象看本质的过程以及数学在实际生活中的重要作用,体验问题解决的情趣。
教学重点:学会化简小数和改写小数。
教学难点:理解小数末尾。
教法:启发引导法
学法:观察、比较、合作交流
教学用具:多媒体课件。
教学过程
一、定向导学:2分
(一)准备
1、说一说小数的性质,“小数末尾”指什么?
2、揭示课题:小数的性质的应用
(二)展示目标
会运用小数的性质将小数进行化简和改写。
二、自主学习:(5分钟)
(一)化简小数
内容:内容:课本p39例3
时间:2分钟
方法:将例3 补充完整,再完成下面练习。
练习1、化简下面小数
0.40 1.850 20.900 0.080 103.00 1.180 0.480
(1--7组的4号发言,1号评价)
(二)改写小数
内容:内容:课本p39例4
时间:3分钟
方法:将例4 补充完整,再完成下面练习。
练习2、把下面小数改写成三位小数。
0.4 1.05 20.100 0.08 10 8.18 10.08
(1--7组的5号发言,2号评价)
三、合作交流(5分)
“化简小数”和“小数的`改写”时,小数的大小改变了吗?为什么?
四、质疑探究:5分钟
在运用小数的性质解决问题,关键是什么不能改变?
五、小结检测:23分钟
1、课堂小结:)
谈谈你有什么收获?有什么感受?还有问题吗?
2、检测:
a、化简下面个数
3.90.300 1.8000 500
5.7800.0040102.02060.0
b、不改变数的大小,把他们写成三位小数。
(1)3.090.61100
c、把相等的数用线连起来。
6.07 10.3
10.300 6.070
0.2 0.900
200.0700 0.02
0.9 200.07
3、堂清作业:课本p41、4.5
板书设计 :
小数性质的应用
例3、化简小数。 (小数的末尾)
0.70=0.7 105.0900=105.09
例4、不改变数的大小,把下面各数写成三位小数。
0.2=0.200 4.08=4.080 3=3.000
整数改写小数,要点小数点。
《小数的性质》教案9
教材分析:
人教版四年级下册“小数的意义和性质”这一单元共有“五个板块”的内容:小数的意义和读写法、小数的性质和大小比较、小数点移动引起小数大小的变化、小数与单位换算和小数的近似数,其中小数的意义的理解是本单元的关键。这一单元涉及到的内容比较多,而且知识点比较散,所以这一单元的复习有一定的难度。
学情分析:
根据学生平时的作业情况,笔者出了相应的前测卷,了解了学生对本单元知识的掌握情况。通过前测分析,发现:本单元知识学生的错误主要集中在小数的意义、小数的近似数和小数与单位换算这三块内容,其中学生对小数的意义的理解和掌握很不乐观,情况如下:
图1第一幅图的错误率居然达到了25、53%,第二幅图的错误率是36、17%,图2的错误率也是25、53%。图1第一幅图和图2的错误率是我没有预想到的,测试前我以为这样的基本的题、常见的题,学生的掌握情况会比较好,但是前测的结果让我吃了一惊。图1第一幅图错误的学生大部分填了1、4,第二幅图大部分填了0、3。细细分析图1这么高的错误率,我们会发现:学生只是关注到了涂色部分的份数而没有关注到分成的总份数,实质上学生对小数的意义没有真正地理解。至于图2,我发现学生说不出1到2这一大段表示多少,也就是说学生对这样的题学生没有真正地理解后去做,有些无从下手。
教学目标:
1、通过对本单元知识系统地整理和复习,让学生进一步理解和掌握本单元知识,沟通小数和分数、小数和整数之间的联系,形成新的认知结构。
2、通过介绍0.3、分析错例、猜数等方式,让学生感受复习与整理的方法,提高学生的学习能力。
3、在学习中,让每一位学生享受到表达的乐趣和成功的喜悦,让学生产生学习数学的信心。
教学重点:通过整理和练习,巩固本单元知识。
教学难点:通过整理和练习,对知识的进一步领悟。
教学预设:
一、梳理知识
1、回顾知识。
(1)揭题:同学们,今天这节课我们一起对小数的意义和性质这一单元进行整理和复习。(出示课题:小数的意义和性质整理和复习)
(2)引导回顾:回忆一下,这一单元我们学了哪些知识?
根据生说师相机板贴知识点。
2、整理知识。
(1)提出问题:那现在我写一个小数(板书:0.3),你能用学过的知识来介绍它吗?
(2)明确要求:在你的介绍中不出现这个数,但让别人一听就明白你在介绍它。(出示课件)
(3)回答一生,理解要求
评价:这样的介绍符合要求吗?
(4)知识归类:他用到了这儿的什么知识?
3、独立思考
(5)思考:他是从意义的角度来介绍的,那还有不一样的介绍吗?
(6)记录:看来已经有很多同学想到了,别急,把你想到的记录在学习单第1题的框里。
学生记录。
师巡视并引导:想到一种的再想想还有没有不同的介绍方法,比一比谁想到的方法最多。
(7)汇报,根据生说师相机板书内容。
预设:
①意义:3个0.1;画图;十分位上是3,个位是0等。
②大小比较:比0.2大比0.4小的一位小数。
③小数点的移动规律:如3的小数点左移一位是几。
④近似数:如0.29保留一位小数。
⑤单位换算:如300千克等于几吨。
(8)总结:一个0.3大家居然想到了这么多,这是我们全班同学的智慧,把掌声送给自己。
【设计意图:通过“介绍0.3”,让学生自主地对本单元知识进行梳理。这样的学习任务,对学生来说是具有挑战性的,可以很好地激发学生的学习主动性;这样的学习任务,可以在较短的时间内完成教学目标,提高教学效率。在“思考介绍方法”和“汇报介绍方法”的过程中,让每一位学生都享受到表达的乐趣和成功的喜悦,感受到“如果你有一种思想,我有一种思想,彼此交换,我们每个人就有了两种思想,甚至多于两种思想”。】
二、查漏补缺
1、过渡:刚才我们用一个0、3对这单元的知识进行了梳理,这节课除了梳理,我们还需要查漏补缺,我对你们的作业和练习情况进行了整理。猜一猜,我们班哪块知识错误最多?(出示课件)
2、根据生说,课件相机出示相应内容并分析。
预设:
(1)小数与单位换算。
①出示错例。
②说妙招:的确,这块内容错误比较多。那做这类题目谁有妙招?
学生总结方法,师板书。
③做一做:那让我们用这个妙招一起来做一做这几题。在学习单第2题的框里写一写过程。
④汇报,师相机书写过程。
(2)小数的近似数。
①出示错例。
②分析错误:这题错误稍微有点多,主要有两种错误,(出示错例)你能帮忙分析一下错误原因吗?
生分析原因。
③引导总结:对于做这样的题你有什么要提醒大家的?
(3)小数的性质与大小比较。
①课件:恭喜你们,你们做得很棒!
②沟通联系:同学们做得这么棒,这个问题肯定难不倒大家,那小数的大小比较跟整数的大小比较有什么相同的'地方?
③同桌交流:想好的跟同桌说一说。
④汇报。
(4)小数点的移动规律。
①课件:恭喜你们,你们做得很棒!
②沟通联系:小数点的移动规律其实我们早就用到过了,一起来看。
出示题,做题,问:仔细观察,你有什么发现?
(5)小数的意义和读写法。
①课件出示:找0、4题
②学生判断:图2、
③激疑:图1为什么不可以?(0.04)图3呢?(0.8)
④总结:都涂了4格,为什么表示的小数却不一样?
图1得出4/100,图2得出4/10,图3:通过再分得到了8/10,所以这个4格其实表示的是0.8。所以我们不仅要看涂的份数,还要看分的总份数。
⑤沟通联系:那问题又来了,出示问题:小数和分数有着怎样的联系?
⑥做错题:相信现在大家不会犯这样的错误了吧!这题应该是(1.04)这题呢?总份数不是10份的要先平均分成10份,是0.6。
【设计意图:这个环节根据学生错误情况,让学生对本单元易混淆和出错的知识进行有针对性的练习,查漏补缺。在练习过程中,让学生说出自己解题的思考过程,总结解题的方法,分析错误的原因,有助于加深学生对本单元知识的理解和掌握,提升思维能力;让学生沟通小数与整数、小数与分数之间的联系,有助于学生从整体上理解和掌握知识之间的内在联系,促进学生认知结构的优化。而且本环节让学生自主选择研究内容,可以很好地激发学生学习的积极性。】
三、巩固提升
1、猜数。
(1)大家学得这么棒,奖励大家玩一个猜数的游戏,(出示课件:猜猜我心中想着几)它就装在这个信封里。
(2)第一猜:给大家第一条信息:它在1与2之间(课件出示直线),会是几呢?
生猜。
师:有多少种可能?(无数种)
(3)第二猜:那再给你第二条信息:它保留一位小数约是1、7,可能是几?
生猜,师相机板书。
师:那这个数最小是几?
最大是几?(1、74,1、749……)(师板书)
师:这些数都有可能吗?为什么?(只要看百分位,跟后面的数没关系。)
师:那找得到这个最大的数吗?(找不到)
师:那有多少种可能?(无数种)
(4)第三猜:那再给你一个信息:它是一个两位小数。
生猜,师判断:大了,小了。
(5)揭晓答案:1.66
2、找位置。
(1)那你能在这条线上找到1、66的位置吗?
(2)那要准确地找到它,谁有好方法?
3、说关系。
(1)出示1、0、1、0、01。
(2)问:1、0、1、0、01之间有着怎样的关系?
【设计意图:通过“猜数”和“找位置”等活动,激发学生的参与热情,对本单元知识进行综合练习,加深学生对小数的意义的理解和掌握,提升对小数的近似数、小数的大小比较等的认识,直观地理解1、0、1、0、01之间的关系,提升学生的思维能力。在“猜数”活动过程中,让学生初步感知到近似数的取值范围;在“找位置”活动过程中,培养学生的数感,感知“找小数位置”的步骤:先确定这个小数在哪两个相邻的整数之间,再确定它在哪两个相邻的一位小数之间……感知“找小数位置”的方法:可以从左往右,也可以从右往左等。】
四、课堂小结
这节课我们是怎么复习的?对你以后的学习有什么启示?
【设计意图:通过小结,让学生回顾这节课复习与整理的方法,提升学生的学习能力。】
374650285750小数的意义和性质整理和复习
小数的意义和性质整理和复习
742950228600意义和读写
意义和读写
板书(部分):
63500057150
742950114300性质和大小比较
性质和大小比较
74295025400小数点的移动规律
小数点的移动规律
768350273050单位换算
单位换算
768350203200近似数
近似数
教学反思:
这一单元涉及到的内容比较多,且知识点比较散,对于这一单元的复习,怎样对知识进行梳理?怎样可以做到高效?怎样能让学生形成新的认知?通过对这一节课的研究,感悟到上好复习课,可以从以下3个方面去展开。
1、制定任务,高效梳理。
学习任务好比承载教学内容的“舟”,复习课学习任务的选择要符合知识内在的逻辑,又要构建整体的学习框架。“介绍0.3”这一任务无疑是一具有挑战性的任务,学生需唤醒所有有用的知识,这充分地调动了学生的学习积极性和主动性。这个“0.3”,承载了本单元涉及的五块内容,学生通过“介绍0.3”,一个单元的知识点以各种方式表达了出来,高效地完成了本单元的知识梳理。
2、基于学情,有效复习。
复习的功能之一是查漏补缺,也就是说,要针对学生学习困难和错误进行复习。这一单元知识多又散,一节课中不可能做到面面俱到,通过前测,了解了学生的学情。
小数的读写、性质与大小比较、小数点移动引起小数的大小比较,这些内容学生基本上没有问题,所以这节课中对这些内容的处理相对比较简单,如大小比较知识只是让学生沟通了小数大小比较与整数大小比较的联系;小数点的移动规律也只是让学生沟通了跟以前知识之间的联系。
本节课的重点放在小数的意义、小数与单位换算、小数的近似数等内容上。如“找0.4”题,通过让学生思考“为什么都涂了4格,表示的小数却不一样”,通过比较、分析、总结,让学生感悟到“不仅要看涂的份数,还要看平均分成的总份数,平均分成10份、100份、1000份……的才能直接写成小数”,从而进一步理解了小数的意义以及小数与分数的联系。又如“单位换算”这块内容错误比较多,所以让学生经历了“说妙招——用妙招——说思路”这样一个过程,帮助学生掌握这块内容。
这样针对学生错误的复习过程,极大地节省了时间,提高了课堂效率,并有效地对本单元内容进行了复习。
3、精选练习,合理拓展。
复习课除了查漏补缺,还要使学生进一步地熟练技能、拓展思维,本节课的练习设计关注恰当的拓展性。如:有关“小数与近似数”的题学生常碰到如“一个两位小数保留一位小数约是3.5,这个小数最大是(),最小是()”这样的题,所以学生以为“近似数是3.5的数只有两位小数这几个数”。针对这样的情况,教学中,通过让学生猜“近似数是1.7的数”,通过找符合要求的最小数和最大数,让学生从这种固定思维中走了出来,感悟到“近似数是1.7”的数有无数个,并初步感知近似数的取值范围。又如:找1.66的位置,学生经历了“说大概的位置——找确切位置”的过程,并在找确切位置的过程中,让学生用“顺着”和“倒着”等不同的方法来找,从而拓展了学生的思维。
《小数的性质》教案10
教学目标
1、初步理解小数的基本性质,并应用性质化简和改写小数。
2、运用猜测、操作、检验、观察、对比等方法,探索并发现小数的性质,养成探求新知的良好品质。
3、感受透过现象看本质的过程以及数学在实际生活中的重要作用,体验问题解决的情趣。
教学重难点
教学重点:让学生理解并掌握小数的性质。
教学难点:能应用小数的性质解决实际问题.
教学工具
ppt课件
教学过程
出示课件在括号里填上适当的数
1元=( )角=( )分 1分米=( )厘米=( )毫米
3米=( )分米=( )厘米 5元=( )角=( )分
(一)、创设情境,引导探索
1师:老师了解到商店的一把勺子的标价是3.00元,在日常生活中说是多少钱呢?(3元),3元和3.00元是什么关系呢?(3=3.00元)出示一副手套的标价是2.50元,我们把2.50元平时说成是多少钱?(2.5元)
师:为什么2.5元末尾添个0大小不变呢?究竟可以添几个零呢?这节课我们就来研究这一方面的知识。
二、探究新知、课中释疑
1.教学例1。让学生动手操作量出三张长0.1米 0.0—1米 0.001米的纸条。
你发现这三张纸条的长度是怎样的?
(1)课件出示1分米、10厘米、100毫米的线段图
请比较一下它们的大小。学生略加思考后马上提问,要求说说你是怎么知道的。(即想的过程)
演示:重合法比较1分米、10厘米、100毫米的大小。
板书并演示:1分米=10厘米=100毫米
(2)导入例1:
你能把它们改写成用米做单位的小数的形式吗?
根据学生回答归纳演示:1分米是1/10米,写成0.1米
10厘米是10个1/100米,写成0.10米
100毫米是100个1/1000米,写成0.100米
并板书:01米 0.10米 0.100米
那0.1米、0.10米、0.100米之间大小有什么关系呢?
学生很快回答后课件演示。并在他们之间加上等号。
我们还可以用重合法比较一下。(课件演示)
(3)指导看黑板:
1分米 = 10厘米 = 100毫米
0.1米 = 0.10米 = 0.100米 0.1=0.10=0.100
提问:这说明了什么问题?
请大家仔细观察这个等式,可以从左往右看,再从右往左看,有什么变化?在这个小数的什么位置(强调是末尾,不是后面)?多(少)0还可以怎么说?
导:想想0.30表示什么意思?0.3呢?应该涂多少格?
学生涂完色问:你为什么这样涂?之后演示涂色过程。
问:谁涂的'面积大?0.30和.0.3的大小怎样?你是怎么知道的?
直观比较法:看上去都一样大;
(在原板书下再板书:0.30=0.3)
(5)从数位顺序表上可以看出,在小数的末尾添零或是去零,其余的数所在数位不变,所以小数的大小也就不变。
师:小数中间的零能不能去掉?能不能在小数中间添零?
生:不能,因为这样做,其余的数所在数位都变了,所以小数大小也就变了。
师:那整数有这个性质吗?(要强调出小数与整数的区别)
(6)判断下面的说法对吗?
(1 在一个数的末尾添上“0”或去掉“0”,小数的大小不变。
(2) 在小数点的后面添上“0”或去掉“0”,小数的大小不变。
(3)在小数的末尾添上“0”或去掉“0”,小数的大小不变。
(4)把小数的末尾的“0”去掉,它的计数单位就发生了变化。
(五)、总结
师:什么叫小数的性质?
十二、作业设计
完成教科书第64页第一题。
板书
小数的性质
观察:1分米=10厘米=100毫米
0.1米=0.10米=0.100米
0.1=0.01=0.001 0.3=0.30
小数的基本性质:小数的末尾添上或去掉“0”,小数的大小不变。
《小数的性质》教案11
教学目标
1.使学生对数的整除的有关概念掌握得更加系统、牢固.
2.进一步弄清各概念之间的联系与区别.
3.使学生对最大公约数和最小公倍数的求法掌握得更加熟练.
4.掌握分数、小数的基本性质.
教学重点
通过对主要概念进行整理和复习,深化理解,形成知识网络.
教学难点
弄清概念间的联系和区别,理解易混淆的概念.
教学步骤
一、铺垫孕伏.
教师谈话:同学们,昨天老师让大家在课下复习了第十册课本中约数和倍数一章的内容,
在这一章中我们学过了哪些概念呢?请同学们分组讨论,讨论时由一名同学做记录.(学生汇报讨论结果)
揭示课题:在数的整除这部分知识中,有这么多的概念,那么这些概念之间又有怎样的联系呢?这节课,我们就把这些概念进行整理和复习.
二、探究新知.
(一)建立知识网络.【演示课件“数的整除”】
1.思考:哪个概念是最基本的概念?并说一说概念的内容.
反馈练习:
在12÷3=4 4÷8=0.5 2÷0.l=20 3.2÷0.8=4中,被除数能除尽除数的有( )个;被除数能整除除数的有( )个.
教师提问:这四个算式中的被除数都能除尽除数,为什么只有这一个算式中的除数能整除被除数呢?整除与除尽到底有怎样的关系呢?
教师说明:能除尽的不一定都能整除,但能整除的一定能除尽.
2.说出与整除关系最密切的概念,并说一说概念的内容.
反馈练习:下面的说法对不对,为什么?
因为15÷5=3,所以15是倍数,5是约数. ( )
因为4.6÷2=2.3,所以4.6是2的倍数,2是4.6的约数. ( )
明确:约数和倍数是互相依存的,约数和倍数必须以整除为前提.
3.教师提问:
由一个数的倍数,一个数的约数你又想到什么概念?并说一说这些概念的内容.
根据一个数所含约数的个数的不同,还可以得到什么概念?
互质数这个概念与哪个概念有关系?它们之间有怎样的.关系呢?
互质数这个概念与公约数有关系,公约数只有1的两个数叫做互质数.
4.讨论互质数与质数之间有什么区别?
互质数讲的是两个数的关系,这两个数的公约数只有1,质数是对一个自然数而言的,它只有1和它本身两个约数.
5.教师提问:
如果我们把24写成几个质数相乘的形式,那么这几个质数叫做24的什么数?
只有什么数才能做质因数?
什么叫做分解质因数?
只有什么数才能分解质因数?
6.教师提问:
谁还记得,能被2、5、3整除的数各有什么特征?
由一个数能不能被2整除,又可以得到什么概念?
(二)比较方法.
1.练习:求16和24的最大公约数和最小公倍数.
2.思考:求最大公约数和最小公倍数有什么联系和区别?
(三)分数、小数的基本性质.
1.教师提问:
分数的基本性质是什么?
小数的基本性质是什么?
2.练习.
(1)想一想,小数点移动位置,小数大小会发生什么变化?
(2)
(3)下面这组数有什么特点?它们之间有什么规律?
0.108 1.08 10.8 108 1080
三、全课小结.
这节课我们把数的整除的有关知识进行了整理和复习,进一步弄清了各概念之间的
联系和区别,并且强化了对知识的运用.
四、随堂练习
1.判断下面的说法是不是正确,并说明理由.
(1)一个数的约数都比这个数的倍数小.
(2)1是所有自然数的公约数.
(3)所有的自然数不是质数就是合数.
(4)所有的自然数不是偶数就是奇数.
(5)含有约数2的数一定是偶数.
(6)所有的奇数都是质数,所有的偶数都是合数.
(7)有公约数1的两个数叫做互质数.
2.下面的数哪些含有约数2?哪些是3的倍数?哪些能同时被2、3整除?哪些能同时被2、5整除?哪些能同时被3、5整除?哪些能同时被2、3、5整除?
18 30 45 70 75 84 124 140 420
3.填空.
在1到20中,奇数有( );偶数有( );质数有( );合数有( );
既是质数又是偶数的数是( ).
4.按要求写出两个互质的数.
(1)两个数都是质数.
(2)两个数都是合数.
(3)一个数是质数,一个数是合数.
5.说出下面每组数的最大公约数和最小公倍数.
42和14 36和9
13和5 6和11
6.0.75=12÷( )=( ) :12=
五、布置作业
1.把下面各数分解质因数.
24 45 65 84 102 475
2.求下面每组数的最大公约数和最小公倍数.
36和48 16、32和24 15、30和90
六、板书设计
数的整除分数、小数的基本性质
数学教案-数的整除 分数、小数的基本性质
《小数的性质》教案12
一、教学内容:
人民教育出版社出版的原通用教材六年制小学课本《数学》第八册第73页例1——例4。
二、教学目的:
使学生掌握小数的性质,能运用小数的性质化简小数,能根据实际需要不改变原数的大小,写成指定位数的小数。
三、学具准备:
同桌的两名学生准备用硬纸条做的米尺一把;长短不一的纸条(长度要大于5分米);剪刀一把。
四、教学过程:
师:(板书:0.6元0.60元)
0.6元、0.60元各表示多少钱?说明了什么?
生:0.6元表示6角钱,0.60元也表示6角钱。说明了0.6元等于0.60元。
师:很好。(板书:0.6元=0.60元)
师:(板书:5、50、500)
“5、50、500”是三个大小不同的数,谁能添上不同的单位名称使它们所表示的量相等?
生:5元、50角、500分。
生:5分米、50厘米、500毫米。
生:5米、50分米、500厘米。
师:同学们都发表了自己的意见,现在我们选其中的一组来研究。(板书:5分米50厘米500毫米)
这三个数量相等吗?请同学们拿出准备好的长纸条,再拿出自己用硬纸条做的米尺,第一大组的同学在长纸条上量出5分米的长度,剪下来,第二大组的同学在长纸条上量出50厘米的长度,剪下来,第三大组的同学量出500毫米的长度,剪下来。(学生操作、教师巡视)
师:同学们量得很好,请每个大组交上来一张剪好的纸条。(教师依次把5分米、50厘米、500毫米长的纸条对齐贴在黑板上)你看出了什么?
生:我看出了三张纸条一样长。
师:对,这说明了5分米=50厘米=500毫米。
[教师在黑板上的5分米、50厘米、500毫米中间添上等号]
师:谁能把5分米、50厘米、500毫米改写成用米作单位的小数?
生:5分米是0.5米,50厘米是0.50米,500毫米是0.500米。
师:(板书:对齐上面板书的5分米、50厘米、500毫米,分别在它们的下面写上0.5米、0.50米、0.500米)
0.5米、0.50米、0.500米相等吗?为什么?
生:相等。因为5分米=50厘米=500毫米。
师:[板书:0.5米=0.50米=0.500米]
师:我们再来比较0.3和0.30的大小(见图30)。
请同学们拿出印好的两个正方形,用阴影分别表示出0.3和0.30。(同时请一名学生在幻灯片上的正方形中分别画上阴影,表示出0.3和0.30)
师:(教师巡视)很好,同学们都画完了,请看幻灯演示:用抽拉片将两个正方形中的阴影部分重合]同学们看出了什么?
生:0.3等于0.30
师:(板书:0.3=0.30)请同学们观察0.3和0.30有什么相同的地方?
生:0.3和0.30都是小数。
生:它们的整数部分都是0,十分位上都是3。
生:它们的大小都不够1。
生:它们的大小相等。
师:再看看它们有什么不同的地方?
生:0.3是一位小数,0.30是两位小数。
生:0.3的百分位上没有0,0.30的百分位上有0。
师:同学们说得都对,它们最主要的相同点是大小相等,最主要的不同点是0.30的百分位上有个“0”,现在看看这个“0”在小数的什么地方?
生:这个“0”在小数的最后面。
生:这个“0”在小数的末尾。
师:对,这个“0”在小数的末尾。今天我们专门来研究小数末尾的“0”。
[教师指着板书的等式0.3=0.30]从左往右看有什么变化?
生:小数的末尾添了个“0”。
师:从右往左看有什么变化?
生:小数的末尾去掉了“0”。
师:它们的大小变了吗?
生:它们的大小没变。
师:请同学们再看前面板演的等式。
0.5米=0.50米=0。500米
从左往右看小数的末尾怎样?
生:小数的末尾添上了“0”。
师:从右往左看小数的末尾怎样?
生:小数的末尾去掉了“0”。
师:它们的大小变了吗?
生:它们的大小没有变。
师:[再指着第一次板演的等式0。6元=0。60元]请同学们从左往右看,再从右往左看,你发现了什么规律?它们的大小怎样?
生:从左往右看小数的末尾添上了“0”,从右往左看小数的末尾去掉了“0”,它们的大小没有变。
师:同学们观察得很好,这就是今天我们要学的“小数的性质”。(板书课题)请同学们打开书第74页看第二段,谁来读?
生:(读)小数的末尾添上“0”或者去掉“0”,小数的大小不变。这叫做小数的`性质。
师:(在黑板上出示小数的性质)小数的性质分几部分内容?请你讲一讲。
生:分两部分内容,一是小数的末尾添上“0”,小数的大小不变,二是小数的末尾去掉“0”,小数的大小不变。
师:很好!学习小数的性质有什么用途呢?请同学们看第74页第三段。[看完后请学生回答]
生:根据小数的性质可以把小数化简。
师:对,怎样化简小数呢?
(出示例3)把0.70和105.0900化简。
生:把0.70末尾的零去掉。
师:(板书:0.70=0.7)
105.0900这个小数化简时只能去掉哪里的“0”?谁上来指一指?
生:只能去掉小数末尾的“0”。
师:(板书:105.0900=105.09)
下面我们进行巩固练习(做练习十九第2、3两题)。
1、下面的数,哪些“0”可以去掉,哪些“0”不能去掉?
3.90 0.300 1.8000 500
5.780 0.0040 102.020 60.06
2、化简下面的小数。
0.40 1.850 2.900 0.50600
0.090 10.830 12.0000 0.0750
(学生做练习,教师巡视、辅导,然后集体订正,及时反馈矫正)
师:学习小数的性质还有什么用途呢?请看课本第74页第四段,看完后回答。
生:根据需要可以在小数的末尾添上“0”。
生:可以把整数改写成小数的形式。
师:对。(出示例4)
例4 不改变数的大小,把0.2、4.08、3改写成小数部分是三位的小数。
生:0.2=0.200。
生:4.08=4.080。
师:很好,根据什么可以这样改写?
生:根据小数的性质:小数的末尾添上“0”,小数的大小不变。
师:怎样把“3”改写成小数部分是三位的小数呢?
生:在“3”的右下角点上小数点,再添上3个“0”,3=3.000。
师:很好,在整数的个位右下角点上小数点,再添上“0”,就能把整数改写成小数的形式。下面我们进行练习(做练习十九第4、5两题)。
1、用“元”作单位,把下面的钱数改写成小数部分是两位的小数。
3元2角 18元 6角 1元零3分
2、不改变数的大小,把下面的数改写成小数部分是三位的小数。
5.4 3 0.04 7 8.01
13 4.87 0.9 185.34
(学生做练习,教师巡视辅导,集体订正)
师:(挂出小黑板)我们再进行下一项练习。
3、把左右两边相等的数用直线连接起来。
0.300 2.08
0.003 2.80
2.080 0.030
2.800 20
20.00 0.3
(请一名同学在小黑板上连线)
师:为什么0003不和0。030连接起来呢?
生:因为0。003和0。030不相等。
师:对。请同学们再看下一道判断题。
4、判断(对就打“√”,错就打“×”)。
小数点末尾添上“0”或者去掉“0”,小数的大小不变,这叫做小数的性质。( )
(请一名同学在小黑板上判断)
师:这位同学打的是“×”,错在哪里?
生:应该是:小数的末尾添上“0”或者去掉“0”,小数的大小不变。而不是“小数点”末尾添上“0”或去掉“0”小数的大小不变。
师:今天我们学的是小数的性质及它的用途。同学们学得很好。
《小数的性质》教案13
教材简析:
这部分内容包括小数的读写和意义。它是在学生对小数和分数有了初步认识的基础上进行学习的,是学生系统学习小数知识的开始,同时又是学习小数四则运算的基础。教材呈现了四种不同的鸟及鸟蛋的质量,通过引导学生提出与鸟蛋质量有关的问题引入对小数的意义和读写法的学习。小数的意义是进一步教学小数性质、比较小数大小的规则、小数点移动引起小数大小变化的规律、名数改写的方法的基础,因此是本信息窗教学的重点,也是难点。
教学目标:
1.结合具体情境,通过观察、操作等活动掌握小数的读写法,理解小数的意义;
2.在合作探索中,掌握小数各部分的名称和小数的数位顺序、小数的计数单位。
3.培养学生的观察能力、分析能力、抽象概括能力和迁移能力,使学生在合作与交流过程中,获得积极的情感体验。
教学过程:
一、创设情境,复习引入
1.谈话:同学们,在我们的数学王国里,除了整数外,你还知道哪些数?你能举一个我们学过的小数的例子,并说出它表示的意义吗?
(学生举例回答,师订正。)
(根据学生的回答,教师板书一组一位小数:0.1 1/10;0.4 4/10)
教师引导学生观察这组数据,这些小数有哪些共同特征?(小组内交流)
学生小组交流后,再集体交流。教师引导归纳:一位小数表示十分之几。
2.谈话:看来同学们前面的知识掌握的不错,作为奖励,老师带来一组美丽的图片,请同学们看大屏幕。(伴随音乐,出示情境图。)
[设计意图]本课是在学习了一位小数和初步认识分数的基础上进行的,所以,先带领学生回顾一下前面所学的有关知识,为学习新知做铺垫。再带领学生欣赏信息窗1,引入新知,培养情感,激发兴趣。
二、结合情境,探究新知
1.学习小数的'读写。
谈话:从图中你都看到了什么?了解到哪些数学信息?(学生交流。)
(1)根据以前的知识,请你从中任选两种蛋的数据试着把它们读或写在练习本上。
(2)全班交流订正。
(3)教师根据学生的读、写情况引导学生概括小数读、写的基本方法。
谈话:对于这些小数,你还想了解它们哪些知识?(学生自由提问。)
下面我们先来研究一下0.25千克中的0.25表示什么意思?
2.学习两位小数的意义。
谈话:0.25千克中的0.25表示什么,首先要弄清0.01表示什么。(板书:0.25 0.01)
(1)出示一张正方形纸片。
谈话:如果正方形纸片用1表示,那么把它平均分成10份,每份可以怎样表示?如果把它平均分成100份。每份可以怎样表示?(学生发言。)
(师板书:0.11/10 0.011/100)
(2)在正方形纸片上表示出0.25。
谈话:我们知道了0.01就是1/100,那么你能在这张正方形纸片上表示出0.25吗?它表示什么?
(小组合作完成,全班交流,师引导学生明确0.25就是25/100,也就是25个1/100。)
板书:0.25 25/100
(3)教师多媒体出示0.05、0.10的方格图,阴影部分表示什么?
板书:0.05 5/100
0.10 10/100
(4)小组讨论:这些小数有什么共同特点?
(全班交流。教师引导学生概括出两位小数表示的意义)
3.学习三位小数的意义。
(1)谈话:我们已经知道了两位小数表示的意义,猜想:那么0.001表示什么?0.365表示什么?(学生口答。学生在两位小数的启发下,可以自然迁移)
(2)教师多媒体出示大正方体塑料块动态平均分产生0.365的过程(教材51的图),引导学生理解0.365就是365个1/1000,也就是365/1000。)
(3)多媒体出示0.305、0.360的阴影方块图,阴影部分表示什么?
(4)引导学生概括出三位小数表示的意义
4.总结小数的意义和计数单位。
(1)谈话:今天我们认识了0.25和0.365这样的小数,你在生活中见过这样的小数吗?
(学生寻找生活中的小数,并结合实际说出它们的意义。)
(2)小组讨论:你认为小数是用来表示什么的数?它的计数单位是什么?
(集体交流,师引导学生总结出小数的意义。)
[设计意图]通过对正方形纸片和正方体塑料块的观察、涂色、操作等活动,以及学生对日常生活中存在的小数的寻找和理解,使学生积累了丰富的感性认识,为学生顺利抽象概括小数的意义奠定了坚实的基础,同时感受小数应用于生活的广泛性。
三、情境练习,巩固提高
1.课件出示自主练习第一题。
学生分别用分数和小数表示图中的阴影部分。
2.自主练习第3题。
学生独立读题,再说一说小数和分数之间的联系。
[设计意图]练习重点是小数和分数的联系,注重培养学生系统归纳知识的能力,也让学生在练习中进一步理解小数的意义。
四、课堂总结
谈话:今天我们进一步认识了小数,你有什么收获,能和大家分享吗?
[设计意图]让学生分享学习成功的喜悦,激发学生的积极性和求知欲,同时也为学生的后续学习总结了经验和方法。
《小数的性质》教案14
教学目标:
【知识与技能】
1.通过观察比较,知道小数部分的末尾添上0或去掉0,小数的大小不变。
2.能运用小数的性质,对小数进行改写和化简。
【过程与方法】
1.通过先独立思考,再小组讨论的教学手段,让学生经历自主探索的过程。
2.用图形面积相等和推算等方法比较小数0.3和0.30的大小,从而让学生自己发现得出小数的性质。
3.引导学生初步领略解题过程中常用的转化的方法。
【情感、态度与价值观】
1.经历验证的过程,培养合理的思维。
2.培养培养学生发散性思维能力。
教学重点:
小数性质的应用。
教学难点:
小数性质归纳的过程。
教学用具准备:
教具、学具、多媒体设备。
教学过程设计:
一、情景引入
1.
板书:三个1,判断相等吗?
接着在第二个1后面添写上一个0,在第三个1的后面添写上两个0,问:这三个数相等吗?(不相等)
你能想办法使它们相等吗?(添上长度单位米、分米、厘米或分米、厘米、毫米)
1米=10分米=100厘米 1分米=10厘米=100毫米。
2.(1)你能把它们改用米作单位表示吗?
0.1米= 0.10米 = 0.100米
(2) 改写成用米作单位表示后,实际长度有没有变化?(没有变化)说明什么?(三个数量相等)
3.引入新授:0添在一个数的哪里可以不改变数的`大小呢?这节课我们就来研究这一方面的知识。
[灵活运用学生学过的知识,从中找到三个相等的数量,发现问题,从而揭示课题]
二、探究新知
1. 出示例1:比较0.30与0.3的大小。
(1)你认为这两个数的大小怎样?(让学生先猜一猜)
(2)可以用什么办法来证明?(给学生独立思考的时间,可以进行小组讨论合作,老师提供两个大小一样的正方形,数射线)
学生汇报:
0.3就是
, 把这个正方形看作整数1,这个正方形平均分成了10份,取这样的三份,就是
, 0.30就是
,把另一个正方形平均分成了100份,取这样的30份,就是
,从图形上发现
=
,所以 0.3=0.30。
推算10个0.01是0.1
30个0.01是0.3
所以0.3=0.30
把0.3和0.30标在数射线上,发现0.3=0.30。
(3)从比较中中发现了什么?
(小数部分的末尾(后面)添零,它的大小不变。小数部分的末尾(后面)去掉零,它的大小不变。)
末尾和后面哪个更好?
(4)这就是今天我们要学习的小数的性质。(出示课题:小数的性质)
板书:小数部分的末尾添上0或去掉0,小数的大小不变。
2. 利用小数的性质举例。
[通过先独立思考,再小组讨论的教学手段,用图形面积相等和推算等方法比较小数0.3和0.30的大小,从而让学生自己发现得出小数的性质。]
三、巩固练习
1. 根据小数的性质,遇到小数末尾有0的时候,一般可以去掉末尾的0,这过程就是把小数化简。
利用小数的性质化简下面各小数:
6.0=( ) 3.500= ( ) 3.340=( )
这样做的根据是什么?(把小数末尾的0去掉,小数的大小不变)
2. 判断:不改变小数大小,下面哪些0可以去掉,哪些0不可以去掉?
0.730 36.070 108.800 10.0
3. 有时根据需要,利用小数的性质来改写小数。
不改变大小,把下面各数改写成三位小数
8.01= 9.8= 6=
改写小数时你想提醒同学们需要注意什么?
(1)不改变原数的大小;
(2)只能在小数的末尾添上0;
(3)把整数改写成小数时,一定要先在整数个位右下角点上小数点后再添0。
4. 当小数部分的位数不同时,可以怎么比较小数的大小?
比较3.14与3.141
(把3.14改写成3.140,就可以从高位起依次比较每个数位上的数字。01 所以3.143.141)
比较下面每组中两个小数的大小:
5.28( )5.2 0.61( )0.612 6.37( )6.375
[通过一系列练习,使学生明确了小数性质的两大运用:把小数改写和化简。]
四、课堂小结
今天我们学习了什么?
生活中你有没有用到过小数的性质?(价格标签)
《小数的性质》教案15
教学内容
人教课标版小学四年级下册第38、39页的内容:小数的性质
学情分析
小数的性质是任教版义务教育教科书四年级下册第38、39页的内容。是在学生学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且为后面的小数的大小比较、小数四则计算打下坚实的基础。学生对于整数的知识已经有了较多的了解,对于整数的末尾添上“0”或者去掉“0”,会引起整数大小的变化有了一定的认识。但小数的性质却与整数不一样,在小数的末尾添上0或者去掉“0”,小数的大小不变,因此,整数的这部分知识,会对小数性质的学习产生负面的影响。
教学目标
知识与技能:让学生在自主探究、合作交流中理解和掌握小数的性质。
过程与方法:培养学生观察、比较、抽象和归纳概括的能力。
情感态度与价值观:激发学生积极主动的合作意识和探索精神,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,积极主动的参与数学活动。
教学重难点
重点:理解和掌握小数性质的含义。
难点:小数基本性质归纳的过程。
教法与学法
1、利用迁移规律,让学生从形象思维逐步过渡到抽象思维,通过直观推理、自主探究、合作交流让学生理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。
2、让学生体验数学问题的探究性和挑战性,激发学习数学的兴趣,主动参与教学活动。
3、培养学生共同合作,相互交流的学习方法。
教学准备
多媒体课件
教学过程
一、复习旧知,导入新课
1、师:同学们,上节课我们学习了什么?(小数的意义)那么在学习新知识之前,让我们一起来复习一下上节课的内容吧!
2、《西游记》同学们都看过没有,那么你们知道《西游记》中都有那些人物(学生自由回答)。
课件展示:有一天,他们口渴了,唐僧要把三根甘蔗分给三个徒弟吃,事先他把甘蔗分别装进三个袋子里,上面标注着长度:0.l米、0.10米、0.100米,馋嘴的八戒抢先一步说:“我的肚子大,我吃长的。”说着拿回了标有“0.100米”的袋子。沙和尚好不服气,上前对师傅说:“八戒好吃懒做,长的应该让给大师兄悟空吃。”悟空笑了笑说:“两位师弟别吵了,无论哪个袋子都一样呀!”唐僧听了悟空的话微笑着点了点头。
师:你知道唐僧听了悟空的话为什么会微笑着点了点头?学了今天的知识你就知道为什么了。
板书课题:小数的性质
设计意图:联系生活实际,达到知识的迁移。
二、提出问题、探索新知
1.出示例1:
⑴师:同学们,这把尺子多长呢?(10厘米)你们还能不能用不同的长度单位来表达出它的长度呢?老师点名提问个别学生来回答。
学:1分米、100毫米。
⑵师;请同学们运用所学有关“小数的意义”的知识,把它们改写成用“米”作单位的小数。
学生独立完成,教师巡视指导个别不会的学生。
⑶教师指名个别学生回答,并对个别表现好的学生给予表扬。
生1:0.1米是1/10米,就是1分米
生2:0.10米是10/100米,就是10厘米
生3:0.100米就是100/1000米,就是100毫米
师:现在老师有个问题请大家帮忙解决一下,0.1米、0.10米和0.100米的大小如何呢?
学生回答,教师总结。
板书:1分米=10厘米=100毫米
0. l米=0.10米=0.100米
设计意图:学生根据小数的意义,从“0.l米、0.10米、0.100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识。
⑷观察比较:教师指着“0.l米=0.10米=0.100米”这个等式,标出思考箭头先让学生从左往右观察、比较,你们发现了什么?
根据学生的回答板书:在小数的末尾添上0,小数的大小不变。再标出思考箭头,让学生从右往左观察,又发现什么规律,补充板书:小数的末尾去掉“0”。
教师强调:我们如果遇到小数末尾有“0”的时候,一般可以去掉末尾的“0”,把小数化简.小数中间的`0不能去掉.
师质疑:那整数有这个性质吗?
学生分小组讨论,并举例证明得出结论。
(师强调出小数与整数的区别)
设计意图:把静态的知识结论转化为动态的求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固,不但知其然,而且知其所以然。同时,还培养了学生归纳概括的能力。
2、教学例2
(1)多媒体出示38页例2:比较0.30与0.3的大小
师:任写一个数,在它的末尾添上一个‘0’或者两个‘0’,用自己的方法验证他们的关系是否相等。
(2)师:刚才同学们用自己的方法证明了我们的发现,想不想知道老师是如何验证的?
①老师将两个同样大小的正方形平均分成了10份和100份,把其中的30份写成小数就是0,30,另一个正方形取其中的3份就是0.3,将两个正方形移动,重合比较,会是什么结果?
②请大家闭上眼睛想象一下,再睁开眼睛观察屏幕,和你想象的一样吗?可以写一个怎样的等式?
汇报结论:0.3=0.30
(3)师质疑:小数由0.3到0.30,你看出什么变了?什么没变?你从中发现了什么?(平均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变,得出0.3=0.30。)
设计意图:学生的思维从形象思维逐步过渡到抽象思维,达到突破难点的目的。放手让学生探索、验证,适时引导学生提出问题,并解决问题。
三、课堂检测
1、运用小数的性质时应注意什么?
0.70(去掉末尾的0,大小会变化吗),2.07(去掉中间的0会怎样),0,7(末尾加个0会怎样)?
提示:根据小数的性质,只有小数末尾的“0”去掉之后,才不会改变数的大小。小数中间的“0”和整数部分的“0”不能去掉,因为那样小数其他数位上的数就发生了变化。
2、判断
(1)小数的末尾添上“0”或去掉“0”,小数的大小不变,意义也不变。 ( )
(2) 0.508去掉小数部分的0,这个小数的大小不发生变化。 ( )
(3)因为2和2.0相等,所以它们都是整数。 ( )
(4) 0.8与0.80大小一样,计数单位也一样。 ( )
3、下面哪些小数中的“0”去掉后,小数的大小没有发生变化?
7.03、4.90、8.10、0.02、3.70
4、按要求说出一个数。
①所有“0”都不能去掉。
②所有“0”都能去掉。
③既有能去掉的“0”,又有不能去掉的“0”。
5、谁能只动两笔就可以在5、50、 500之间画上等号?
5=50=500
四、本课小结
通过这节课的学习,你有哪些收获?
五、作业布置
课本41页练习十:1、2、3
板书设计
小数的性质
1分米=10厘米=100毫米
0.1米=0.10米=0.100米
小数的末尾添上或去掉“0”,小数的大小不变。
【《小数的性质》教案】相关文章:
《小数的性质》教案12-17
《小数的性质》教案15篇02-20
数学教案-小数的性质09-29
小数的性质09-29
小数的性质小学数学教案10-05
对小数性质表述的商榷10-02
“小数的性质”教学预案09-29
《小数的性质》说课设计10-02
教案设计:小数的性质 作者:赵艳峰12-17