小学数学方程教案

时间:2023-02-14 19:06:27 教案 我要投稿

小学数学方程教案

  作为一位杰出的老师,常常需要准备教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。快来参考教案是怎么写的吧!下面是小编收集整理的小学数学方程教案,仅供参考,大家一起来看看吧。

小学数学方程教案

小学数学方程教案1

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙谈话导入

  师:看下面的字母,你知道它们分别是什么意思吗?

  SOS EMS m2

  (SOS:求助信号;EMS:中国邮政快递;m2:平方米)

  字母在生活中随处可见,这说明它很重要。今天我们就来进一步巩固用字母表示数及解方程等知识。(板书课题:用字母表示数、解方程)

  ⊙回顾与整理

  1.用字母表示数。

  (1)用字母表示数的作用和意义。

  用字母可以简明地表示数、数量关系、运算定律和计算公式,为研究和解决问题带来了很多方便。

  (2)我们曾经学过哪些用字母表示数的知识?

  整理:

  ①用字母表示数的简写。

  ②用字母表示数量关系。

  ③用字母表示运算定律。

  ④用字母表示计算公式。

  (3)常见的用字母表示的数量关系有哪些?

  预设

  生1:路程用s表示,速度用v表示,时间用t表示,三者之间的关系如下:

  s=vt v= t=

  生2:总价用a表示,单价用b表示,数量用c表示,三者之间的关系如下:

  a=bc b= c=

  (4)常用的.运算定律有哪些?

  预设

  生1:加法交换律:a+b=b+a

  生2:加法结合律:(a+b)+c=a+(b+c)

  生3:乘法交换律:a×b=b×a

  生4:乘法结合律:a×b×c=a×(b×c)

  生5:乘法分配律:a×(b+c)=a×b+a×c

  (5)常见的用字母表示的计算公式有哪些?

  预设

  生1:长方形的长用a表示,宽用b表示,周长用C表示,面积用S表示。

  C=2(a+b) S=ab

  生2:正方形的边长用a表示,周长用C表示,面积用S表示。

  C=4a S=a2

  生3:平行四边形的底用a表示,高用h表示,面积用S表示。

  S=ah

  生4:三角形的底用a表示,高用h表示,面积用S表示。

  S=

小学数学方程教案2

  教学目的:

  1、在解决实际问题的过程中,进一步巩固形如ax+b=c、ax-b=c的方程的解法,同时理解并掌握形如ax÷b=c的方程的解法,会列上述方程解决两步计算的实际问题。

  2、提高分析数量关系的能力,培养学生思维的灵活性。

  3、在积极参与数学活动的过程中,树立学好数学的信心。

  教学重点、难点:

  引导学生独立分析问题,找出题目中的.等量关系。

  教学对策:

  在积极参与数学活动的过程中,树立学好数学的信心。

  教学准备:

  教学光盘

  教学过程:

  一、复习准备

  1、解方程(练习一第6题的第1、3小题)

  4x+12=50 2.3x-1.02=0.36

  学生独立完成,再指名学生板演并讲评,集体订正。

  二、尝试练习

  师:刚才的两道题同学们完成得很好,这道题你们还能自己解决吗?试试看。

  出示:30x÷2=360

  学生独立尝试完成,全班交流。

  指名学生说一说,解这个方程是第一步需要做什么?这样做依据了等式的什么性质?

  三、巩固练习

  1、出示练习一第7题。

  (1)分析数量关系

  提问:谁来说说三角形的面积公式是怎样的?根据学生回答板书:S=ah÷2。联系这个公式你能找出数量之间的相等关系吗?(生独立思考后在小组内交流)指名口答。你觉得在这些数量关系中,哪一个等量关系适合列方程?根据这个数量关系我们可以列出怎样的方程?板书:1.3x÷2=0.39。

  第⑵题生独立思考并列出方程,在小组内说说自己的思考过程后全班交流。板书:3x+18=19.8。

  (2)学生独立计算,并检验答案是否正确,全班核对。

  小结:在一个实际问题中,可能会有几个不同的等量关系,我们应该选择合适的等量关系来列方程。

  2、练习一第8题。

  学生读题后可用自己喜欢的方法将与杨树和松树有关的信息分别列表整理(如列表,作标记等)

  学生独立解决后再说说数量之间有怎样的数量关系,是根据什么样的数量关系列出的方程,最后核对解方程的过程。(提示学生可从得数的合理性来初步检验)

  3、练习一第9题。

  学生独立思考,指名分析数量关系,教师结合学生回答画出线段图帮助学生理解题意。

  学生独立解方程再集体订正。

  4、练习一第10题。

  教师简单介绍相关天文知识后,学生独立解答,然后及时交流,教师及时讲评。

  5、练习一第11题。

  学生读题后教师提问:在本题中出现了两个问题,那么我们在写设句时要注意什么?(提示学生用不同的字母分别表示小亮出生时的身高和体重)

  学生独立解决,集体核对。结合学生板演情况进行讲评,进一步规范学生的书写格式。

  6、练习一第12题。

  提问:你能看懂这张发票上所提供的信息吗?数量间有怎样的等量关系呢

  学生独立列方程解答,同桌同学互相检查,再集体订正。

  7、练习一第13题。

  学生阅读第13题,理解后独立解决问题,再交流。

  教师再补充几题,如:98.6、212华氏度相当于多少摄氏度等。

  四、全课小结

  说一说你这一节课的学习收获及还有什么问题。

  五、布置作业

  完成配套习题。

小学数学方程教案3

  教学内容:

  教材第88---90页

  教学目标:

  1、结合情境,了解方程的意义;

  2、会用方程表示简单的等量关系;

  3、在列方程的过程中,体会方程与现实世界的'密切联系。

  教学重难点:

  1、了解方程的意义;

  2、会用方程表示简单情境中的等量关系。

  教学准备:

  情境图、课件、卡片(等式、不等式、方程….)

  教学过程:

  一、课前谈话,设疑导入

  1、为什么学习方程?

  2、方程是什么?

  二、带着问题自主学习,合作交流,建立方程概念

  问题一:为什么学方程?

  (一)出示天平,建立等量概念:

  左边=右边

  (二)出示情境图分组学习(如书88页称药丸、称月饼、倒水)

  1、小组合作,看图找出等量关系,用式子表示出来

  2、小组汇报,并将式子板书在黑板上

  小结:刚刚我们每一小组用式子表达情境问题中的等量关系,说说我们用的式子和以前用的式子有什么相同、不同之处?

  问题二:什么是方程?

  根据小结板书:含有未知数的等式叫方程。

  1、读一读:

  师:你认为这句话中哪些词语比较重要,试着用声音传达给大家。

  2、圈一圈:

  师:根据这句话找一找,黑板上的式子哪些是方程呢?把它们圈出来吧。

  3、写一写:

  师:在数学世界里只有这几个方程了吗?你还能写几个呢?(无数个)(学生独立完成板书在黑板上)

  4、试一试:

  含有未知数的式子就是方程吗?举个例子。

  等式一定是方程吗?举例。

  5、游戏巩固:听口令做动作

  游戏目的:使学生更清楚地认识方程的两个要素:未知数和等式

  游戏规则:请几位学生手拿卡片听口令,如:发令者说:“等式”跳一跳,拿着等式卡片的人就要跳一跳,其他的人不能动。

  三、课堂小结:

  1、这节课你有什么收获?

  2、第89页练一练第1、2题。

  四、布置作业

小学数学方程教案4

  设计说明

  本节课的教学任务是使学生了解等式性质(二),并会用这个性质解方程。由于学生在探究等式性质(一)时已经具备了一定的学习经验,因此本节课的教学设计主要突出以下两点:

  1、在操作实践中验证等式性质(二)。

  在教学中,通过学生的亲身实践,边操作边观察边总结,使等式性质(二)顺利地生成,同时让学生对此有直观的理解,强化学习效果。

  2、通过直观图理解解方程的过程。

  在指导学生利用等式性质(二)解方程时,充分发挥了直观图的作用,加深学生对解方程的过程和依据的了解,提高学习效率。

  课前准备

  教师准备:

  PPT课件

  学生准备:

  天平,若干个贴有标签的砝码

  教学过程

  猜想导入

  师:谁能说出我们学过的等式性质?

  [学生回顾上节课学习的内容,并汇报:等式两边同时加上(或减去)同一个数,等式仍然成立]

  引导学生猜想:等式两边都乘同一个数(或除以同一个不为0的数),等式是否仍然成立呢?思考并在小组内交流自己的想法,然后汇报。

  设计意图:学生已经学过了等式两边都加上(或减去)同一个数,等式仍然成立的性质。上课伊始,先复习所学知识,并由此进行合理猜想,再自然地引入新课,直奔主题。

  动手验证,探究规律

  师:大家的猜想对不对呢?我们来验证一下。

  1、(课件演示,学生操作)天平左侧的砝码重x克,右侧放5克的砝码,这时天平的指针指向正中央,说明了什么?你知道左侧的砝码重多少克吗?怎样用等式表示?(说明天平平衡,左侧的砝码重5克,x=5)

  2、如果左侧再加上2个x克的砝码,右侧再加上2个5克的砝码,这时天平的指针指向正中央,说明了什么?你能写出一个等式吗?(说明天平平衡,3x=3×5)

  3、如果左侧有2个x克的砝码,右侧有2个10克的砝码,这时天平的指针指向正中央,说明了什么?你能写出一个等式吗?(说明天平平衡,2x=20)

  4、如果左侧拿走一个x克的砝码,右侧拿走一个10克的砝码,这时天平的指针指向正中央,说明了什么?你能写出一个等式吗?(说明天平平衡,2x÷2=20÷2)

  5、通过上面的'游戏,你发现了什么?

  小结:等式两边都乘同一个数(或除以同一个不为0的数),等式仍然成立。

  设计意图:利用课件的演示和动手操作,让学生体会天平两侧的变化情况,加深学生对等式的理解,体会等式的变化规律。

  解方程

  1、(课件出示教材70页方程:4y=20xx)

  师:你们能求出这个方程的解吗?

  (学生先独立尝试,然后小组交流,并汇报)

  预设

  方法一:想?×4=20xx,直接得出答案。

  方法二:用等式性质解方程,方程的两边都除以4,从而得出答案。

  师:为什么方程的两边都除以4,依据是什么?

  预设

  生:依据是等式的两边都乘同一个数(或除以同一个不为0的数),等式仍然成立。

  让学生说出用等式性质解方程的过程。

小学数学方程教案5

  一、教学目标:

  1、结合具体情境,类比等式变形的过程抽象出等式的性质,了解等式性质是解方程的依据。

  2、会用等式性质解形如x+5=12的简单方程。

  3、培养观察、分析概括的能力。

  二、课时安排:

  1课时

  三、教学重点:

  能用等式的性质解简单的方程。

  四、教学难点:

  了解等式的性质。

  五、教学过程

  (一)导入新课

  故事引入:在古代三国的时候,有人送给曹操一头大象,曹操要知道大象的重量,大臣们都不知道怎么办。这时小儿子曹冲却称出了船上石头的重量。你是怎样理解曹冲的方法的.?

  (板书:大象的体重=石头的重量)

  师:曹冲之所以聪明,就在于他“运用了数量之间的等量关系来解决问题”的策略。今天我们也要用他这个策略解决以下问题。

  检查预习。

  (二)讲授新课

  探究一:学习等式性质

  1、师操作:在天平两侧各放一个5克砝码。

  提问:你能用一个等式表示天两边关系吗?

  提问:如果在天平一边加上一个砝码,天平会怎样?要是天平不平衡,怎么办?

  提问:你还能用一个等式表示吗?

  教师呈现其他天平直观图,鼓励学生观察并写出等式。

  全班交流,

  教师总结概括出等式性质。

  等式两边都加上同一个数,等式仍然成立。

  师操作在刚才的基础上一个一个减砝码。

  提问:你能用等式来表示吗?

  提问:如果在天平一边去掉一个砝码,天平会怎样?要是天平不平衡,怎么办?

  提问:你还能用一个等式表示吗?

  教师呈现其他天平直观图,鼓励学生观察并写出等式。

  全班交流,

  教师总结概括出等式性质。

  等式两边都减去同一个数,等式仍然成立。

  3、教师小结:我们刚才用天平演示的等式两边同时加上或者减去同一个数,等式仍然成立,这是等式的性质。这也是我们今天解方程的依据。

  (三)重点精讲。

  探究二:学习解方程

  师板书x+2=10问:用天平如何表示?

  问:如何用刚才的知识解方程?(两边都减去2)

  1、师根据学生回答板书并画出天平图。

  2、师在解题示范时要注重“解”和“等于号”的书写要求。

  3、交代检验方法。

  4、学生试着解方程。

  y-7=12 23+x=45

  组内交流收获和疑惑。

  小组汇报。

  教师总结板书:根据等式的性质解方程。

  (五)随堂检测

  1、请你画图或举例说说下面这句话的意思:等式两边都加上(或减去)同一个数,等式仍然成立。

  2、看图列方程,并解方程。

  3、解方程。

  (1)x – 19 = 2

  (2)x - 12.3 = 3.8

  4、看图列方程,并解方程。

  5、看图列方程,并解方程。

  6、看图列方程,并解方程。

  板书设计

  X+5=7 x-5= 7

  解:X+5-5=7-5解:x-5+5=7+5

  X=2 x=12

  等式的两边同时加上或者减去同一个数,等式仍然成立。

小学数学方程教案6

  【教学内容】 教材P135~136页复习第16~23题。

  【教学目标】

  1、使学生进一步理解用字母表示数的优点。会用字母表示常见的数量关系,会根据字母所取的值,求含有字母式子的值。

  2、进一步理解方程的意义,会解简易方程。

  3、会列方程解应用题。

  【教学重点】

  用字母表示常见的数量关系,根据字母所取的.值,求含有字母式子难点】的值,解简易方程和列方程解应用题。

  【教学过程】

  一、揭示课题

  今天我们复习的内容是有关简易方程的知识,通过复习要进一步理解用字母表示数的优点,会用字母表示常见的数量关系,进一步理解方程的意义,会解方程,会列方程解应用题。

  二、复习用字母表示数量关系,公式,运算定律

  1、 出示表:用字母表示运算定律。

  名称 用字母表示

  加法交换律 a+b=b+a

  加法结合律 (a+b)+c=a+(b+c)

  乘法交换律 ab=ba

  乘法结合律 (ab)c=a(bc)

  乘法分配律 (a+b)c=ac+bc

  2、请学生说平面图形面积计算公式和长方形、正方形周长公式。

  3、用字母还可以表示数量关系,a表示单价,b表示数量,c表示总价,说出分别求总价、单价及数量的字母公式。

  4、练习:期末复习第16题。

  5、求含有字母式子的值。做期末复习第17题。

  (1)原来每月烧的煤用30c表示;现在每月烧的煤用30(x-15)表示。

  (2)学生计算现在每月烧煤的千克数。

  三、复习方程的意义和解方程

  1、什么是方程?什么是方程的解和解方程?方程和等式关系是怎样的?

  2、练习:做期末复习第18题。

  学生练习。讲解第(3)题,在方程3x=y中y=21,先把y=21代人原方程成为3x=21再解方程。

  3、做期末复习第19题。

  请学生说一说解方程的方法。

  4、做期末复习第20题。

  学生列方程并解方程。

  四、复习列方程解应用题

  1、(1)列方程解应用题的特征是什么?解题时关键是找什么?

  (2)请学生说一说列方程解应用题的一般步骤。

  2、做期末复习第2123题。

  第21题:

  学生说数量关系式,列方程并解答,根据已列方程写出另外两个不同的方程。

  第22题:

  师画线段图表示题目的条件和问题,学生列方程解答。

  第23题:

  学生说数量关系式、列方程解答。

  五、全课总结

  这节课复习了什么内容。

  六、布置作业

  补充

  1、(1)某商店上午卖出3台微波炉,下午卖出6台微波炉,每台。元,上午比下午少卖( )元。

  (2)四(3)班有x人,每人7本练习本;四(2)班有48人,每人有y本练习本。(x48)

  7x表示( )。

  48y表示( )。

  48-x表示( )。

  7x+48y表示( )。

  2、解方程:

  80-4x=68 45+x=30

  46-13-x=10 20x-28=52

  x-(30+8)=11 4x3=60

  3、列出方程,并求出方程的解。

  (1)从80里减去3x得11,求x。

  (2)60比一个数的5倍多5,求这个数。

  4、列方程解应用题。

  (1)一个三角形面积是6000平方米,底是400米,求高。

  (2)甲乙两地相距320千米,一辆汽车从甲地开往乙地,平均每小时行70千米,若干小时后,这辆汽车不仅到达乙地,还超过乙地30千米,汽车已行了几小时?

  (2) 一捆电线长155米,装了38盏电灯还剩3米,平均每盏灯用线多少米?

小学数学方程教案7

  教学目标:

  1、理解等式的基本性质一,并能较熟练地运用它解形如x+a=b的方程。

  2、能较为熟练地运用形如x+a=b的方程解决简单的实际问题。

  3、初步理解方程的解、解方程的含义,会检验给出的未知数的值是不是某方程的解。

  4、培养学生规范书写和自觉检验的好习惯。

  教学重点:

  1、 对等式的基本性质一的理解和运用。

  2、 掌握解形如x+a=b的方程的依据、步骤和书写格式。

  3、 能较为熟练地运用形如x+a=b的方程解决简单的实际问题。

  教学难点:

  1、 掌握解形如x+a=b的方程的依据、步骤和书写格式。

  2、 较为熟练地运用形如x+a=b的方程解决简单的实际问题。

  教学过程:

  教学时由复习方程的意义入手,在出示情境图后提出问题,学生最先想到的是算术方法,此时引导:你能列方程解决这一问题吗?在列出方程600+x=860

  后,怎样求x呢?在学生渴望解决这一问题的内在需求的驱使下,展开合作探索活动。

  在教学等式的.基本性质时,可利用实物演示,通过提问:怎样变换,能使天平仍然保持平衡呢?,以引导学生思考,启发学生把两组图的内容归纳成一句话。这样,及时引导学生超脱实例的具体性,实现必要的抽象概括。

  这时就可以让学生自己思考、探索x的值的求法,然后在小组讨论后汇报。学生在陈述自己的想法时,不仅要说出自己是怎样推算的,还要请学生说出这样推算的理由。在这一过程中,要特别强调解方程的每一步得到的都是等式,而不是递等式。

  教学中还要重视对学生书写的要求,初学时,可要求学生等号对齐。方程两边同时减去一个数的计算过程,开始练习时也要求学生写出来,待熟练之后再简写。无论是解方程还是检验,都要从一开始就强化书写规范,以发挥首次感知先入为主的强势效应,促进良好的书写习惯的形成。

  最后引出方程的解和解方程的概念时,要强调:方程的解是一个数,而解方程是一个过程,帮助学生理解、区别这两个概念。

  模式方法:观察――实验――讨论――交流――概括结论

  作业设计:自主练习1-3题。

  讨论要点

  1、 教学时,要充分利用天平,让学生通过观察、实验、讨论、交流,帮助学生理解等式的基本性质一。

  2、 教学时,要关注学生的算术思维向方程思维的转变。

  3、 在检验的问题上,要注重引导学生由算术法的验算向方程法的检验转变。

  4、 教学时,要加大引领力度,充分发挥教师的作用。一要做好学生解决问题的思维方式的引领,进一步拓宽学生解决问题的渠道,提高学生解决问题的能力。二是对解方程以及列方程解决问题的思路、步骤及格式的引领。

  活动总结

  本次教研活动,使老师们更加清楚地了解学生已有的知识基础,较为准确地把握教学的重点和难点。设计较为实际的教学环节,降低学生学习的难度,同时也为教师在教学中围绕重点、突破难点指明了方向。

小学数学方程教案8

  教材分析

  1、这节课是解简易方程的第一课时,是在学生学了四则运算及四则运算各部分之间的关系和学生已具有的初步的代数知识(如:用字母表示数,求未知数x)的基础上进行教学。

  2、这节课为后面学习解方程应用题做了准备,为后面学习分数应用题、几何初步知识、比例等内容时要直接运用,这节课是教材中必不可少的内容,是本章节的重点内容之一。

  学情分析

  1、学生对本节课所学知识很感兴趣,这对开展有效的课堂教学奠定了良好的基础。

  2、学生运用新知识解决实际问题的能力存在比较明显的.差异,但不同的学生具有不同的潜力。

  3、优秀学生与学习困难生对方程的理解在思维水平上有较大差异。

  教学目标

  1、结合具体图例,进一步理解等式不变的规律,会用等式不变的规律解方程。

  2、掌握解方程的步骤和书写格式。

  3、提高学生分析问题并用数学知识解决问题的能力。

  4、培养学生进行数学探究的能力及合作意识。

  教学重点和难点

  1、本节课的重点是:根据等式的性质解方程。

  2、本节课的难点是:理解等式的性质;掌握解方程的步骤和书写格式。

  教学过程

  一、复习导入:

  1、什么叫方程?什么叫方程的解? 什么叫解方程?

  2、前面,我们学习了两个等式保持不变的规律,等式的不变规律是什么?

  等式这些规律在方程中同样适用吗?

  今天我们就学习如何利用等式保持不变的规律来解方程。

  二、探究新知:

  1、电脑出示课件例1。

  2、从图中可以获取哪些信息?图中表示了什么样的等量关系?

  要求盒子中有多少个皮球,也就是求x等于什么,该怎样列方程?我们怎样解这个方程?

  3、探究怎样解方程。

  利用天平让学生进行探究,怎样才能使天平左边只剩下x,而且保持天平平衡?

  (让学生通过探究得出:从两边各拿走3个玻璃球,天平仍然平衡。)

  4、知识迁移。

  把刚才天平的做法用到方程上,也就是方程两边怎样做,方程左右两边仍然相等?

  (方程两边同时减去一个3,左右两边仍然相等。)

  板书+3—3=9—3

  x=6

  5、追问:左右两边同时减去的为什么是3,而不是其它数呢?

  (因为方程两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。因此,解方程就是通过等式的变化,如何使方程的一边只剩下一个x即可。)

  6、x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。

  7、x=6是不是正确的答案呢?怎么验算呢?同桌之间进行讨论并验算。(x=6是方程的解)

  8、学生练习:解方程(X+21=32 X+41=50)

  9、学生讨论交流:解X+a=b这类方程的思路是什么?

  10、如果方程的两边同同时加上同一个数,左右两边还相等吗?为什么?

  11、学生尝试解方程:X—3=9

  12、学生讨论交流:解X—a=b这类方程的思路是什么?

  13、小结:解X+a=b这类方程的思路。(根据等式的性质1,在方程的左右两边同时加上或减去同一个数,左右两边仍然相等。实际上是加了什么就减去什么,减了什么就加上什么,两边同时进行。不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。)

  三、巩固练习:

  1、填一填(出示课件)。

  使学生进一步加深理解和运用等式不变规律1解决问题实际问题。

  2、书上“做一做”第1题(1)题

  3、巩固尝试:解方程(出示课件)。

  让学生独立完成会用等式不变规律1解方程,强调验算。

  四、课堂总结:

  通过这节课的学习,你都有哪些收获?

  五、拓展活动:

  利用课余时间小组内探究像32—X=10这类方程可以怎样解?

  六、作业设计:

  练习十一第5题一二行,第6题一行。

小学数学方程教案9

  一、设计理念:

  随着学生学习知识的迁移,让学生在利用等式性质解方程的基础上学会运用移项的方法解方程,既巩固了小学基础知识,又为初中教学打下坚实的基础。

  二、教学目标:

  知识与技能:让学生在利用等式性质解方程的基础上学会运用移项的方法解方程,运用相关规律,熟练的进行解方程计算。

  过程与方法:让学生通过体验移项解方程的历程,观察、比较,进而归纳出解各类方程的快捷方法,得出一些相关规律,培养学生观察,思考,对比,归纳的方法。

  情感态度与价值观:运用“勾漏”双向四步教学法,适当创设教学情境,激发学生的学习兴趣。

  三、教学重、难点:

  教学重点:让学生在让学生在利用等式性质解方程的基础上学会运用移项的方法解方程,掌握各类解方程的一些规律,运用相关规律,熟练的进行解方程计算。

  教学难点:让学生体验移项解方程的历程,观察、比较,进而归纳出解各类方程的.快捷方法,得出一些相关规律,培养学生观察,思考,对比,归纳的方法。

  四、教学方法:“勾漏”双向四步教学法;观察法、比较法、归纳法。

  五、教学准备:教学课件

  六、教学过程

  (一)、勾人入境:

  同学们,利用等式的性质我们学会了解方程,其实上,熟练后,我们可以不用写得那么麻烦,三言两语就可以轻松地解方程了啊!想学吗?

  (二)、漏知互学:

  我们先按运算符号把方程分成四大块:一、加法方程,二、乘法方程;三、减法方程;四、除法方程

  先来看第一大块的加法方程

  186+x=200

  用等式的性质这样解:

  186+x=200

  解:x+186—186=200—186

  X=14

  熟练后可以这样解:

  186+x=200

  解:x=200—186

  X=14

  有什么规律呢?先看符号(+——--符号相反)再看数字(数字顺序也相反),那合起来说就是:加法方程,数符相反。有趣吗?

  现在我们再看第二大块的乘法方程

  36×x=108

  用等式的性质这样解:

  36×x=108

  解:X×36÷36=108÷36

  X=3

  熟练后可以这样解:

  36×x=108

  解:X=108÷36

  X=3

  师:他们又有什么规律呢?(课件展示)哦真聪明!乘法方程与加法方程的规律一样,数字顺序和运算符号都相反了,所以我们把乘法方程与加法方程合在一起称为:乘加方程,数符相反。明白了吗?记住了吗?

  现在我们再来看第三大块,减法方程:

  X—36=12

  用等式的性质这样解:

  X—36=12

  解:X—36+36=12+36

  X=48

  熟练后可以这样解:

  X—36=12

  解:X=12+36

  X=48

  那么它们又有什么规律呢?先看未知数x都在减号前,接下来的运算符号都用加法,那么是不是所有的减法方程都是用加法呢?别急,请看:

  108—X=60

  用等式的性质可以这样解:

  108—X=60

  解:108—X+X=60+X

  108 =60+X

  60+X =108

  X+60-60 =108-60

  X=48

  熟练后可以这样解:

  108—X=60

  解:X=108—60

  X=48

  同学们,比较一下,这两题减法方程与上面两题有什么不同呢?对,未知数x都在减号后面,运算符号都是用减法,那么我们就可以把这两张种减法方程合并起来说:减法方程,前加后减。未知数x在减号前用加法,未知数x在减号后,用减法。

  接下来我们再来学习第四块,除法方程:

  X÷12=5

  用等式的性质可以这样解:

  X÷12=5

  解:X÷12×12=5×12

  X=60

  熟练后可以这样解:

  X÷12=5

  解:X=5×12

  X=60

  同学们,你发现了什么?对,眼睛真厉害!未知数x在除号前,解完这道题,谁发现,有没有似曾相识的感觉:与减法一样,1、未知数X在除号前面,2、都用乘法,3、数字没有相反。怎么办,对,先算完另外一种情况(X在除号后的)再说,那么请开始吧。

  48÷X=3

  用等式的性质可以这样解:熟练后可以这样解:

  48÷X=3 48÷X=3

  解:48÷X×X=3×X解:X=48÷3

  48=3×X X=16

  3×X=48

  X=48÷3

  X=16

  仔细观察比较,你发现了什么?解除法方程的规律你找到了吗?1、未知数X在除号后面,2、都用除法,3、数字没有相反。以上说明在除号前后的计算方法不一样,那么它的规律要根据X在除号前后来判断,X在除号前用乘法,X在除号后用除法,从而得出他的规律是除法方程,前乘后除,它和减法有类似感。

  (三)、流程对测:

  小组内各出加减乘除的方程各一条,然后交换计算,看谁算得又快又准确。

  小组开始探究,教师巡逻指导

  (四)、结课拓展:请同学们说说这节课你学到了什么?

小学数学方程教案10

  设计说明

  1.创设生活化的数学情境,激发学生的学习兴趣。

  创设生活化的数学情境,不仅可以使学生容易掌握数学知识和技能,而且可以“以境生情”,可以使学生更好地体验数学内容中的情感,使原本枯燥、抽象的数学知识变得生动形象、富有情趣。课前从学生买喜欢吃的水果入手,创设了帮助阿姨算账的数学情境,引出数学问题,使学生产生探究欲望,从而更好地进行新知的学习,感受数学与生活的密切联系。

  2.发挥主体作用,培养学生分析问题、解决问题的能力。

  课程强调以学生的发展为本,学生在教学过程中的主体地位越来越被重视。在教学中,注意安排学生独立思考与小组交流相结合,让学生自主观察情境图,了解画面信息,找出等量关系,理清解决问题的思路,小组内讲解自己的思考过程,再向全班汇报。这样既能增加学生学习的信心,又能培养学生分析问题和解决问题的能力,拓宽学生的思维。

  课前准备

  教师准备 PPT课件 学情检测卡 课堂活动卡

  学生准备 练习卡片

  教学过程

  ⊙创设情境,引入新课

  师:看,水果店里真热闹啊!顾客们忙着挑选自己喜欢吃的水果,收银台忙得不可开交。一位阿姨也买了一些水果,谁来说说她都买了什么?(课件出示教材77页例3情境图)

  师:从图中你还获得了哪些数学信息?

  师:这位阿姨想让你们帮她算算苹果每千克多少钱,你们愿意吗?

  师:这节课我们继续学习列稍复杂的方程解决生活中的实际问题。(板书课题)

  设计意图:创设生动的生活情境,激发学生主动探究的欲望,建立现实生活与数学学习的桥梁。

  ⊙探究新知

  1.教学例3。

  (1)小组交流,找出等量关系,列出方程。

  师:题中的已知条件和所求问题各是什么?

  预设 生1:已知条件是买苹果和梨各2kg,共10.4元,梨每千克2.8元。

  生2:问题是苹果每千克多少钱。

  师:这些数学信息之间存在着怎样的等量关系?你能根据等量关系列出方程并说明你的.想法吗?

  预设 生1:用未知数x表示每千克苹果的价钱。可以根据“苹果的总价+梨的总价=总价钱”这一等量关系列出方程2x+2.8×2=10.4。“2x”表示苹果的总价,“2.8×2”表示梨的总价,两者相加就是总价钱。

  生2:还可以根据“两种水果的单价总和×2=总价钱”这一等量关系列出方程(2.8+x)×2=10.4,“(2.8+x)”表示两种水果的单价总和。

  (2)解方程,总结列形如axabc的方程解决问题的步骤。

  (课件出示学生列的两个方程)

  师:仔细观察这两个方程,它们和我们上节课学习的方程有什么不同?

  师:上节课学习的是列形如ax±bc的方程,是求比一个数的几倍多几(或少几)的数是多少的问题。这节课所学的知识是根据两积之和的数量关系,列形如axabc的方程来解决问题。那么形如axabc的方程怎么解呢?请同学们小组讨论这一类型方程的解法。

  (学生先小组讨论,探究解法,再交流,最后汇报)

  预设 生1:在2x+2.8×2=10.4这个方程中,把2x看成一个整体,先算2.8×2,原方程转化为2x+5.6=10.4,根据等式的性质1,方程左右两边同时减去5.6,就转化成了我们学过的方程。

  生2:在(2.8+x)×2=10.4这个方程中,把小括号里的式子看成一个整体,也就是这个整体×2=10.4。根据等式的性质2,方程左右两边同时除以2就转化成了我们学过的方程。(师同步板书)

  师:同学们真聪明!我们可以运用转化的方法把形如axabc的稍复杂的方程转化为简单的方程,进而求出方程的解。注意求出解后别忘了检验。

  (3)比较。

  师:这两个方程之间有什么联系?小组内讨论。

  生小组内讨论后汇报:运用了乘法分配律。

小学数学方程教案11

  教学目标

  1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;

  2.培养学生观察潜力,提高他们分析问题和解决问题的潜力;

  3.使学生初步养成正确思考问题的良好习惯.

  教学重点和难点

  一元一次方程解简单的应用题的方法和步骤.

  课堂教学过程设计

  一、从学生原有的认知结构提出问题

  在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

  为了回答上述这几个问题,我们来看下面这个例题.

  例1某数的3倍减2等于某数与4的和,求某数.

  (首先,用算术方法解,由学生回答,教师板书)

  解法1:(4+2)÷(3-1)=3.

  答:某数为3.

  (其次,用代数方法来解,教师引导,学生口述完成)

  解法2:设某数为x,则有3x-2=x+4.

  解之,得x=3.

  答:某数为3.

  纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并透过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.

  我们明白方程是一个内含未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中带给的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.

  本节课,我们就透过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.

  二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤

  例2某面粉仓库存放的面粉运出15%后,还剩余42500千克,这个仓库原先有多少面粉?

  师生共同分析:

  1.本题中给出的已知量和未知量各是什么?

  2.已知量与未知量之间存在着怎样的相等关系?(原先重量-运出重量=剩余重量)

  3.若设原先面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?

  上述分析过程可列表如下:

  解:设原先有x千克面粉,那么运出了15%x千克,由题意,得

  x-15%x=42500,

  所以x=50000.

  答:原先有50000千克面粉.

  此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?

  (还有,原先重量=运出重量+剩余重量;原先重量-剩余重量=运出重量)

  教师应指出:(1)这两种相等关系的表达形式与“原先重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,能够任意选取其中的一个相等关系来列方程;

  (2)例2的解方程过程较为简捷,同学应注意模仿.

  依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的状况,教师总结如下:

  (1)仔细审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;

  (2)根据题意找出能够表示应用题全部含义的.一个相等关系.(这是关键一步);

  (3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;

  (4)求出所列方程的解;

  (5)检验后明确地、完整地写出答案.那里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有好处.

  例3(投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?

  (仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误.并严格规范书写格式)

  解:设第一小组有x个学生,依题意,得

  3x+9=5x-(5-4),

  解这个方程:2x=10,

  所以x=5.

  其苹果数为3×5+9=24.

  答:第一小组有5名同学,共摘苹果24个.

  学生板演后,引导学生探讨此题是否可有其他解法,并列出方程.

  (设第一小组共摘了x个苹果,则依题意,得)

  三、课堂练习

  1.买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?

  2.我国城乡居民1988年末的储蓄存款到达3802亿元,比1978年末的储蓄存款的18倍还多4亿元.求1978年末的储蓄存款。

  3.某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数.

  四、师生共同小结

  首先,让学生回答如下问题:

  1.本节课学习了哪些资料?

  2.列一元一次方程解应用题的方法和步骤是什么?

  3.在运用上述方法和步骤时应注意什么?

  依据学生的回答状况,教师总结如下:

  (1)代数方法的基本步骤是:全面掌握题意;恰当选取变数;找出相等关系;布列方程求解;检验书写答案.其中第三步是关键;

  (2)以上步骤同学应在理解的基础上记忆.

  五、作业

  1.买3千克苹果,付出10元,找回3角4分.问每千克苹果多少钱?

  2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?

  3.某厂去年10月份生产电视机20xx台,这比前年10月产量的2倍还多150台.这家工厂前年10月生产电视机多少台?

  4.大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉.求每个小箱子里装有洗衣粉多少千克?

  5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元.求得到一等奖与二等奖的人数。

小学数学方程教案12

  【教学目标】

  使学生进一步认识用字母表示及其作用,能正确的用含有字母的式子表示数量及数量关系。

  【重点难点】

  能正确的用含有字母的式子表示数量及数量关系、计算公式等。

  【教学准备】多媒体课件,实物投影。

  【谈话导入】

  1、看到这些字母,你能立刻想到什么?

  课件出示:

  BTVsoskgNBA……

  同学们能很快的说出这些字母或字母组合表示的意义吗?说明字母在生活有一定的地位和作用。

  2、揭示课题:这节课我们就来学习式与方程。(板书课题)

  【复习讲授】

  复习字母表示数

  1、结合谈话导入说说用字母表示数有什么优越性?

  教师:用字母能简明的表达数量关系、运算定律和计算公式,为研究和解决问题带来很多方便。

  2、请同学们完成下面的练习。

  (1)填空。(课件出示)指名板演,其余学生写在练习本上。

  ①用s表示路程,v表示速度,t表示时间,那么s=()。

  ②b乘5、6可以写作(),还可以写作();a乘h可以写作(),还可以写作()。

  ③a、b、c、d表示非0自然数,那么分数乘法的计算方法可以用字母表示()。

  (2)订正后提问:在写含有字母的式子时需要注意什么问题?

  3、师生共同总结在写含有字母的式子时应注意的问题:

  (1)在含有字母的式子里,数和字母中间的乘号可以记作“?”也可以省略不写。

  (2)省略乘号时,应当把数字写在字母的前面。

  (3)数与数之间的乘号不能省略。加号、减号、除号都不能省略。

  4、巩固练习。

  (1)完成教材第81页的第一个“做一做”。

  (2)根据题意写出各式表示的意思。

  一种滚筒式洗衣机,单价a元,商城第一天卖出m台,第二天卖出9台。

  m-9表示()m+9表示()

  ma表示()9a表示()

  (m+9)a表示()(m-9)>a表示()

  答案:

  (1)

  (2)第一天比第二天多卖出的.台数

  第一天和第二天一共卖的台数

  第一天卖的钱数

  第二天卖的钱数

  两天一共卖的钱数

  第一天比第二天多卖的钱数(或第二天比第一天少卖的钱数)

  【课堂作业】

  教材第82页练习十六第1、2题。

  学生独立完成,教师要求学生自己检验。

  【课堂小结】

  通过这节课的学习,你有哪些收获?

  【课后作业】

  完成练习册中本课时的练习。

  第8课时式与方程(1)

  在写含有字母的式子时应注意的问题:

  1、在含有字母的式子里,数和字母中间的乘号可以记作“?”,也可以省略不写。

  2、省略乘号时,应当把数字写在字母前面。

  3、数与数之间的乘号不能省略。加号、减号、除号都不能省略。

小学数学方程教案13

  教学目标:

  1、让学生初步经历列方程解决一步计算的实际问题的学习过程,掌握列方程解决实际问题的一般步骤货物方法,会列方程解决一些简单的实际问题。

  2、让学生在学习活动中初步感受方程,丰富解题策略,发展数学思考,培养分析问题、解决问题的能力。

  3、让学生进一步感受数学在解决现实问题中的作用,体验用新的策略解决生活中数学问题的快乐,增强学习数学的信心。

  教学过程:

  一、导入:

  我们已经认识了方程,学会解只含有加、减法和乘、除法一步计算的过程。在实际生活中,用列方程、解方程的方法也能把一些分析数量关系比较困难的问题,很容易解决。这节课我们就学习列方程解决简单的实际问题。(板书课题)

  二、新课:

  1、教学例题

  (1)出示例题。

  师:列方程解决实际问题和我们过去解决实际问题一样,首先要审题。(板书:审题)

  题中告诉我们哪些已知信息?要我们解决什么问题?

  (2)过去我们解决实际问题时,审题后要分析数量关系,列方程解决实际问题也要分析数量关系,所不同的是,现在我们要找一个数量关系式。(板书:找等量关系式)

  (3)过去我们解决问题时是想怎样从已知的推算出未知的,现在我们可以把未知的数设为X。(板书:设未知数)可以这样写:先写“解”字,表示解题的过程,而设小军的跳高成绩为X米这句话必须写下来,否则,人家就不知道你下面列出的方程是什么意思。

  (4)谁能根据我们找到的等量关系式列出方程?(板书:列方程)

  (5)下面我们用解方程的方法就可以找到问题的答案了。(板书:解方程)

  请学生上黑板板书。

  强调:因为在设的前面已经写上了“解”字,所以在接方程时不再需要写“解”字了。

  (6)、因为这里是解决实际问题,在求出答案后,还应该像过去解决实际问题一样写上答句。(板书:写答句)

  (7)、在问题解决后要检验答案是否正确、合理。突出两点:第一是看方程列的是否合理,第二是看解方程是否正确。(板书:检验)

  2、练一练:第一题

  3、找出题中的等量关系式。

  (1)、小明打一1200个字的文章,已经打了一些,还剩下280个字没打。小明打了多少个字?

  (2)、学校为扩充图书资料,今年计划投入 资金1.2万元,是去年的.1.6倍。去年投入资金多少万元?

  (3)、一个正方形的周长是27.2厘米,这个正方形的边长是多少厘米?

  4、试一试:

  蓝鲸是世界上最大的动物。一头蓝鲸重165吨,大约是一头非洲象的33倍。这头非洲象大约重多少吨?(列方程解答)

  5、练一练:第二题

  三、全课:

  1、 列方程解决实际问题的步骤是什么?解题的关键是什么?

  2、 通过这节课的学习你还有那些收获?还有什么问题?

小学数学方程教案14

  教学目标

  了解一元二次方程的概念;一般式ax2+bx+c=0(a0)及其派生的概念;应用一元二次方程概念解决一些简单题目.

  1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.

  2.一元二次方程的一般形式及其有关概念.

  3.解决一些概念性的题目.

  4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.

  重难点关键

  1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.

  2.难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.

  教学过程

  一、复习引入

  学生活动:列方程.

  问题(1)《九章算术》勾股章有一题:今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?

  大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?

  如果假设门的高为x尺,那么,这个门的宽为_______尺,根据题意,得________.

  整理、化简,得:__________.

  问题(2)如图,如果 ,那么点C叫做线段AB的黄金分割点.

  如果假设AB=1,AC=x,那么BC=________,根据题意,得:________.

  整理得:_________.

  问题(3)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少?

  如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.

  整理,得:________.

  老师点评并分析如何建立一元二次方程的数学模型,并整理.

  二、探索新知

  学生活动:请口答下面问题.

  (1)上面三个方程整理后含有几个未知数?

  (2)按照整式中的多项式的规定,它们最高次数是几次?

  (3)有等号吗?或与以前多项式一样只有式子?

  老师点评:(1)都只含一个未知数x;(2)它们的'最高次数都是2次的;(3)都有等号,是方程.

  因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.

  一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a0).这种形式叫做一元二次方程的一般形式.

  一个一元二次方程经过整理化成ax2+bx+c=0(a0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.

  例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.

  分析:一元二次方程的一般形式是ax2+bx+c=0(a0).因此,方程(8-2x)(5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.

  解:去括号,得:

  40-16x-10x+4x2=18

  移项,得:4x2-26x+22=0

  其中二次项系数为4,一次项系数为-26,常数项为22.

  例2.(学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.

  分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a0)的形式.

  解:去括号,得:x2+2x+1+x2-4=1

  移项,合并得:2x2+2x-4=0

  其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.

  三、巩固练习

  教材P32 练习1、2

  四、应用拓展

  例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.

  分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+170即可.

  证明:m2-8m+17=(m-4)2+1

  ∵(m-4)20

  (m-4)2+10,即(m-4)2+10

  不论m取何值,该方程都是一元二次方程.

  五、归纳小结(学生总结,老师点评)

  本节课要掌握:

  (1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.

  六、布置作业

小学数学方程教案15

  教学目标:

  知识目标:通过复习,加深一元一次方程、方程的解等概念的了解,会根据具体问题中的数量关系列出方程并求解。

  能力目标:培养学生运用数学知识解决实际问题的能力。

  情感目标:让学生领悟数学在解决实际问题中的价值。

  教学重点:

  一元一次方程的解法和应用。

  教学过程:

  一、本章知识回顾:

  1.有关概念:

  (1)方程:含有未知数的等式叫做方程。

  注意:方程必须满足两个条件:①含有未知数;②是等式。(2)方程的解:使方程左右两边相等的未知数的值叫做方程的解。

  (3)一元一次方程:只含有一个未知数并且未知数的式子是整式,未知数的次数是1.注意:判断一个方程是否是一元一次方程,满足三个条件:①只含有一个未知数;②未知数的次数是1;③未知数的系数不为0.

  (4)方程的'简单变形规则:

  ①方程两边都加上或减去同一个数或同一个整式,方程的解不变。

  ②方程两边都乘以或除以同一个不为0的数,方程的解不变。

  (5)移项:把等式一边的某一项改变符号后移到另一边,方程的解不变。

  2.解一元一次方程的步骤:

  ①去分母;②去括号;③移项;④合并同类项;⑤系数化为列一元一次方程解

  应用题的步骤:①审:弄清题意,分清已知量和未知量,明确个数量间的关系;②设:设出未知数;③列:根据题中的等量关系列出方程;④解:求出方程的解;⑤答:检验所求的解是否符合题意,并写出答案。

  二、运用知识,训练能力

  1.下列方程中,哪些是一元一次方程,哪些不是?并说明理由。

  (1)4+5x=11

  (2)x+2y=5

  (3)x2-5x+6=0

  (4)1?xx=3

  (5)x?1x2+3=1 2,已知方程2xm+1+3=5是一元一次方程,则m= --------- 3.解方程:x?33-x?12=某人乘船由A地顺流而下到B地,然后又逆流而上到C地,共乘船4小时,已知船在静水中的速度是每小时千米,水流的速度是每小时千米。若两地相距10千米,求两地的距离。

  解:设两地的距离为x千米,因C地位置没有确定,所以需对C地位置进行分类讨论:

  (1)当C地在两地之间时,由题意列方程得:------------------------------,解得--------------。

  (2)当C地在两地之外时,由题意列方程得:------------------------------,解得--------------。

  故两地的距离为--------------------。 5.小亮是一名七年级的学生,一次对方程

  2x?1x4-?m4= -1去分母时,由于粗心,方程右边的-1没有乘4而得到错解x=3,你能由此判断出m的值吗?如果能,请求出此方程正确的解。

  三、合作探究,解决问题

  复习题4、5、14、17

  通过生生、师生合作,共同完成。

  四、畅谈收获,分享成果

  通过本节课的复习,你又有哪些新的收获?

  五、布置作业

  复习题

【小学数学方程教案】相关文章:

数学教案-方程的意义和解简易方程09-29

数学教案:简易方程01-19

数学教案:函数与方程02-25

数学教案-解方程09-29

数学教案-简易方程09-29

数学教案-方程的认识09-29

数学教案-列方程09-29

小学数学第九册教案之《简易方程》之《方程的意义》12-17

解简易方程数学教案02-08