- 相关推荐
质数与合数的教案
在教学工作者实际的教学活动中,很有必要精心设计一份教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么教案应该怎么写才合适呢?下面是小编精心整理的质数与合数的教案,欢迎大家借鉴与参考,希望对大家有所帮助。
质数与合数的教案1
教学内容:人教版小学数学五年级下册地14-15页
教学目标:
知识和技能
1、借助分类思想使学生理解并掌握质数和合数,并能准确判断一个数是质数还是合数。
2、能在百数表中正确找出100以内的质数,熟记20以内的质数。
问题解决与数学思考
引导学生运用“阅读理解题意-分析解答-回顾反思”的方法推导出奇数加奇数的和是偶数,奇数加偶数的和是奇数,偶数加偶数的和还是偶数的结论,培养学生解决问题的能力。
情感、态度和价值观
1、在体验和探究的过程中,要注重全体学生的参与性,让学生感悟数学活动充满着探索与创新感受数学文化的魅力,培养学生勇于探索的科学精神。
2、在教学活动中,培养合作学习意识,同时注意培养学习数学的自信心,进一步培养学生的学习习惯。
重点和难点
重点:
1、理解质数和合数的意义。
2、掌握“阅读理解题意-分析解答-回顾反思”解决问题的方法。
难点:区分奇数、偶数、质数、合数。
教具:小黑板
教学设计
一、复习引入
1、(小黑板出示)1-20的各数中,看到者需数字你能想到最近我们学了哪些知识?
1,3,5,7,9,11,13,15,17,19是什么数?
2,4,6,8,10,12,,14,16,18,20是什么数?
2,4,6,8,,10,12,14,16,18,20还是什么的倍数?
5,10,15,20都是什么的倍数?
3,6,9,12,15,18都是什么的倍数?
10,20既是什么的倍数,也是什么的倍数?
………
同学们能从不同角度来观察、分析、回答这些问题,说明你们做的太棒了,今天我们继续来研究这些可爱的数字,我相信你们一定会有新的收获和意想不到的发现。
二、组织研究,体验发现
1、说明方法
师:你们提出的数学问题很有价值,怎么研究这些问题呢?先让我们来共同回忆以前研究数的方法,哪位同学先来说一说,该怎么做?
我们一般是找一组数据,再观察,讨论,找出它们的共同点。
2、小组合作研究
科学的论证都来自于实践,下面就请同学们以1-20这些数入手来共同研究质数和合数的相关知识。
小组合作提示:
找出这些数的因数有哪些?
仔细观察这些数的因数的个数,会有什么发现?
根据因数的个数把这20个数进行分类,小组交流。
3、老师巡视合作情况,点名学生汇报
2的因数有(1,2)
3的因数有(1,3)
4的因数有(1、2,4)
5的因数有(1、5)
6的因数有(1,2,3,6)
7的因数有(1,7)
8的因数有(1,2,4,8)
9的因数有(1,3,9)
10的因数有(1,2,5,10)
11的`因数有(1,11)
12的因数有(1,2,3,4,6,12)
13的因数有(1,13)
14的因数有(1,2,7,14)
15的因数有(1,3,5,15)
16的因数有(1,2,4,8,16)
17的因数有(1,17)
18的因数有(1,2,3,6,9,18)
19的因数有(1,19)
20的因数有(1,2,4,5,10,20)
前面我们根据什么,就把自然数分为了哪两种数?
而现在我们找的是1至20里的什么数呢?
我们又可以根据什么数的个数,又可以把自然数分为几类呢?
第一类是只有一个因数的:1
第二类是有两个因数的:2,3,5,7,11,13,17,19。
第三类是有两个以上因数的:4,6,8,9,10,12,14,15,16,18,20。
你们的发现特别有价值说明你们有很强的观察能力。下面还有哪个小组也这样分?
4、总结概念
像上面这样,只有1和它本身两个因数的数,就叫质数。也叫素数;除了1和它本身还有别的因数的数就叫合数。
哪1呢?
1不符合质数的特征,也不符合合数的特征,所以,它既不是质数,也不是合数。
师:谁来说一说0属不属于上面三种里面的哪一种呢?
师:0虽然是自然数。上面的三种是“除0以外的自然数,按它的因数个数来分”。而我们前面学因数和倍数时就特别说明,所研究的数是指非0自然数。0不属于我们研究的数,所以它都不属于三种里的任何一种。
5、找百以内的质数
(1)让学生小组合作找,教师巡视。
(2)点名说一说怎么找。
(3)时引导学生找。
(4)、请学生说说找的方法。
6、师引领总结叙述:自然数按不同的标准分类就会有不同的结果,如:按因数的个数可以把自然数分为几类?(三类,既质数、合数和1三类);如果按是不是2的倍数可以把自然数分为几类?(两类,既奇数和偶数两类)。下面的结果是奇数还是偶数呢?请大家以小组为单位进行研究。出示例2:奇数+奇数=什么数
偶数+偶数=什么数
奇数+偶数=什么数
小组活动提示:
(1)从题目中你知道了什么?
(2)你用什么方法可以推导出结果?
(3)你的结论正确吗?你怎样证明?
学生小组合作讨论,教师巡视指导。
师:哪个小组来说说你们是怎么研究的?
从题目中谁知道要解决的问题是把什么数和数什么相加,什么数和什么数相加,什么,看加的结果是奇数还是偶数?
可不可以举例子来说明呢?
“解决这个问题很简单,所采用的方法和刚开始上课时所用的方法一样,先找一组数据,找出其中的奇数和偶数,然后用其中的数据来证明就行了吧”。
例、1,2,3,4,5,6,7。然后来证明。
奇数+奇数=偶数(1+3=41+5=61+7=8)
偶数+偶数=偶数(2+4=62+6=84+6=10)
奇数+奇数=奇数(1+2=31+4=51+6=7)
还可以用什么方法来证明?。
那我们来在黑板上演示一下。
还可以举一些大数试一试,如:235+123=358246+368=614123+248=371)得到的结论还是和上面一样。
三、巩固练习
1、请你来判断。
(1)所有的奇数都是质数。()
(2)所有的偶数都是合数。()
(3)在1,2,3,4,5,……中,除了指数以外都是合数。()
(4)1既不是质数也不是合数。()
2、根据所给提示写电话号码
师:你想知道我的手机号码吗?
它是最小的奇数()
它的最大因数和最小倍数都是3()
它是10以内最大的质数()
它是10以内中既是2的倍数又是3的倍数()
它是10以内3的最大倍数()
它是最小的合数()
它是所有非0自然数的因数()
它是从小到大排列的第五个自然数()
它是10以内的自然数中相邻的合数,而且是第一个合数()
它是10以内中3的最大倍数()
它既不是质数也不是合数()
四、作业布置(课本练习四的1-4题)
五、课堂小结
1、这节课学了什么知识?
2、质数和合数是按什么来分的?
板书设计
质数和合数
奇数偶数
质数合数1
自然数按什么来分而分为奇数和偶数?
自然数又按什么来分又可以分为质数和合数、1呢?
质数与合数的教案2
【教学内容】 人教版五年级数学下册第二单元质数和合数例1。
【教学目标设计】
1、知识与技能:使学生理解并掌握质数、合数的概念,并能进行正确的判断。
2、过程与方法:采用探究式学习法,通过观察、自主学习-合作、交流验证-分类、比较-抽象-归纳总结-巩固 。 提高学习过程,培养学生观察和概括能力,培养学生积极探究的意识。
3、情感态度与价值观:在体验与探究的活动中,让学生体验数学活动充满着探索与创新,感受数学文化的魅力,培养学生勇于探索的科学精神。
【教学重难点】:
1. 掌握质数、合数的概念。
2. 正确地判断一个数是质数还是合数?
【教具学具准备】:课件
教学过程:
一. 导入新课:
1.导入课题:前面我们学习了奇数和偶数。那么自然数还有没有其他的分法?今天这节课我们就一起来研究“质数与合数”(板书课题)
2.说出自己的学号、爸爸、妈妈、爷爷或奶奶的年龄,老师判断这个数是质数还是合数?
3.激发兴趣。
二.探究新知。
1.说出1~20各数的因数。(课件出示,开火车的形式)
2.观察思考 这些数的因数的个数一样多吗?(生:不一样)
3.师:你能把这些数按因数的个数进行分类吗? ( 学生讨论,分类 )
4.学生报结果(学生完成表格)
5. 观察比较,发现特点,归纳概念。
(1)师:观察2.,3,5,7,11,13,17,19 这几个数的因数的个数有什么特点?
一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
(2)师:观察4,6,8,9,10,12,14,15,16,18,20这几个数的因数的个数有什么特点?
一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
(3)师:1既不是质数,也不是合数。
6.最小的质数是几?有没有最大的'质数?最小的合数是几?有没有最大的合数?
7.展示老师和学生制作的思维导图。
8.判断自己的学号是质数还是合数?
三.自学例1:
1.指名汇报预习的结果。
2.质疑。
3.找质数的方法是:筛选法。
4.修改自己圈的质数。
5.出示质数歌。
四.智慧大闯关:
1.判断下面的数字是质数还是合数?
(1)全年12个月,大月有31天,小月是30天,平年2月是28天, 闰年2月是29天。
(2)五(1)班上学期有52人,这学期又转来1名学生,现在共53人。
2. 下面的说法正确吗?说一说你的理由。
(1)所有的奇数都是质数。 ( )
(2)所有的偶数都是合数。 ( )
(3)在1,2,3,4,5,…中,除了质数以外都是合数。( )
(4)两个质数的和是偶数。 ( )
3.猜数。
4.猜一猜老师的电话号码是多少?
(1)是奇数,但不是质数也不是合数。
(2)比最小的质数大1。
(3)比最小的合数大2。
(4)10以内最大的奇数。
(5)是奇数,但不是质数也不是合数。
(6)10以内既是奇数,又是合数。
(7)和第6个数相同。
(8)10以内最大的质数。
(9)10以内最大的偶数。
(10)和第一个数相同。
(11)是最小的偶数。
5.数学游戏。
五.数学文化:
结合数学文化进行思想教育。
质数与合数的教案3
教学目标
1.经历并探究奇数、偶数相加的规律。
2.运用数的奇偶性解决一些简单问题。
3.培养探索精神,树立科学严谨的学习态度。
教学重难点
学习重点:掌握奇数、偶数相加的规律。
学习难点:灵活地运用奇数、偶数相加的规律。
教学工具
PPT课件
教学过程
一、复习导入,引入新课。(7分钟)
1.课件出示:
(1)什么叫做奇数?什么叫做偶数?
(2)什么样的数叫做质数?什么样的数叫做合数?
2.找出20以内的奇数、偶数、质数和合数。(课件出示)
(1)奇数有:
(2)偶数有:
(3)质数有:
(4)合数有:
3.引入新课:这节课我们一起来探究奇数、偶数相加的规律。
二、自主探究,总结探究奇数、偶数相加的规律。(18分钟)
1.课件出示例2,读题,理解题意。
2.引导学生找几个奇数、偶数然后加起来,通过探究,你们发现了什么规律?
3.根据学生的汇报进行小结。
4.验证猜想
奇数-偶数=( )
奇数-奇数=( )
偶数-偶数=( )
学案
1.回顾学过的概念。
(1)在自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
(2)一个数,如果只有1和它本身两个因数,这样的数叫做质数。一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
2.独立思考,集体交流。
(1)奇数有:1、3、5、7、9、11、13、15、17、19
(2)偶数有:0、2、4、6、8、10、12、14、16、18、20
(3)质数有:2、3、5、7、11、13、17、19
(4)合数有:4、6、8、9、10、12、14、15、16、18、20
3.明确本节课的学习内容。
(1)观看课件,获取相关信息。
(2)偶数+奇数=( )
奇数+奇数=( )
偶数+偶数=( )
4.小结:
偶数+奇数=奇数
奇数+奇数=偶数
偶数+偶数=偶数
5.验证交流。
奇数-偶数=奇数
奇数-奇数=偶数
偶数-偶数=偶数
三、巩固练习(10分钟)
1.完成教材第16页第4题。
2.完成教材第17页第6、7题。
四、课堂总结,拓展延伸。(5分钟)
1.通过本节课的学习,你有什么收获?
2.读一读教材第17页“你知道吗?”
课后小结
在学习了质数和合数,奇数和偶数的基础上来探究奇数、偶数相加的规律。本节课的教学主要采用游戏法,让学生在游戏活动中加强交流,探索规律,形成自主、合作、探究的数学学习氛围。同时,也让学生体验到学习知识的乐趣,激发学生学习数学知识的兴趣。
本节课首先复习奇数、偶数、质数、合数的`概念来引入新课,然后采用探究性问题让学生自主、合作、探究数的奇偶性,激发了学生学习的兴趣,营造了和谐、愉快的学习氛围。练习题的设计也具有针对性,有助于培养学生运用数的奇偶性来解决问题的能力。
课后习题
1.判断题。(对的画“√”,错的画“×”)
(1)在2,3,4,5…中,除了合数以外都是质数。( )
(2)所有的偶数一定是合数,并且所有的质数一定是奇数。( )
(3)1既不是质数,也不是合数。( )
(4)两个质数的和都是偶数。( )
答案:(1)√(2)×(3)√(4)×
2.不计算,判断下列算式的结果是奇数还是偶数。(在结果是奇数的算式下画横线,在结果是偶数的算式下面画波浪线)
328+736 836-655
1000-427-144
1+2+3+4…+19
23×16-11×7
答案:328+736 836-655
1000-427-144
1+2+3+4…+19
23×16-11×7
质数与合数的教案4
教学内容
质数和合数
教材第14页的内容及练习四第1~3题。
教学目标
1.理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按因数的个数进行分类。
2.通过自主探究、合作交流的方法,理解质数和合数的意义,经历概念的形成过程。
3.培养学生自主探索、独立思考、合作交流的能力,充分展示数学的魅力。
重点难点
重点:初步学会准确判断一个数是质数还是合数。
难点:区分奇数、质数、偶数、合数。
教具学具
投影仪。
教学过程
一、创设情境,激趣导入
师:“六一”快到了,老师给大家送来了礼物!(出示百宝箱)大家想要吗?可是这上面有锁,而且是一个密码锁,打不开,怎么办?
师:密码是一个三位数,它既是一个偶数,又是5的倍数;最高位上的数是9的最大因数;十位上的数是最小的质数。你能打开密码锁吗?
学生质疑:什么是质数。教师引入本节课内容,板书:质数和合数。
二、探究体验,经历过程
1.认识质数与合数。
师:找因数--找出1到20的'各个数的因数,看一看它们的因数的个数有什么特点?
学生分组进行,找出之后进行分类。
生:老师,我发现这些数的因数有的只有1个,有的有2个,有的有3个,还有的有4个或更多。
师:很好,我们可以把它们分类,大家把分类结果填在表中。
投影展示学生的分类结果。
【设计意图:在学生独立思考的基础上,找出1~20的因数后总结出特点,为下文概念的出示做准备,使学生亲身经历概念的形成过程,印象深刻】
师:一个数,如果只有1和它本身两个因数,这样的数叫做质数。如2、3、5、7都是质数。一个数,除了1和它本身还有别的因数,这样的数叫做合数。如4、6、15、49都是合数。1既不是质数也不是合数。
师:再举出几个质数和合数的例子,举得完吗?说明了什么?(质数和合数都有无数个)
想一想:最小的质数(合数)是几?最大的呢?
师:所以按照因数个数的多少,自然数又可以分为哪几类呢?
课件出示:可以把非0自然数分为质数和合数以及1,共三类。
2.制作质数表。
投影出示例1。
师:怎样找出100以内的质数呢?
生1:可以把每个数都验证一下,看哪些是质数。
生2:先把2的倍数划去,但2除外,划掉的这些数都不是质数。然后划掉3的倍数,但3不划掉……
【设计意图:通过教师的引导,学生自主建构知识,完成100以内的质数表,使学生形成一个知识网络,进一步培养了学生的数感】
三、课末总结,梳理提升
这节课我们学习了质数和合数的概念,知道了1既不是质数也不是合数。在利用所学知识进行判断时,我们要抓住质数与合数的本质特点,从因数的个数入手进行判断。在对整数进行分类时,要明确分类标准,不能把质数和合数与奇数和偶数混淆。
板书设计
教学反思
1.学生是数学学习的主人,是数学课堂上主动求知、主动探索的主体。教师是数学学习的组织者、引导者和合作者。课堂上,我尽一切所能为学生创设可观察、可探索、可发现的问题情境,让学生以科学探究的方法学习数学,促进每一位学生的发展。
2.学生是知识建构过程的主体。自主探究要让学生根据自己的生活经验或已有的知识背景去探索知识,从某种意义上说,自主探究的目的不单纯在于数学知识的掌握,而在于数学方法的掌握和情感体验的获得,通过自己探索获得“再创造”的体验。
质数与合数的教案5
【教学内容】
质数和合数(课本第14页例1及第16页练习四1~3题)。
【教学目标】
1.使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。
2.知道100以内的质数,熟悉20以内的质数。
3.培养学生自主探索、独立思考、合作交流的能力。
4.让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。
【重点难点】
质数、合数的意义。
教学过程:
【复习导入】
1.什么叫因数?
2.自然数分几类?(奇数和偶数)
教师:自然数还有一种新的分类方法,就是按一个数的因数个数来分,今天这节课我们就来学习这种分类方法。
【新课讲授】
1.学习质数、合数的概念。
(1)写出1 ~20各数的因数。(学生动手完成)
点四位学生上黑板写,教师注意指导。
(2)根据写出的因数的个数进行分类。(填写下表)
(3)教学质数和合数概念。
针对表格提问:什么数只有两个因数,这两个因数一定是什么数?
教师:只有1和它本身两个因数,这样的数叫做质数(或素数)。
如果一个数,除了1和它本身还有别的因数,这样的数叫做合数。(板书)
2.教学质数和合数的判断。
判断下列各数中哪些是质数,哪些是合数。
17 22 29 35 37 87 93 96
教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)
质数:17 29 37
合数:22 35 87 93 96
3.出示课本第14页例题1。
找出100以内的质数,做一个质数表。
(1)提问:如何很快地制作一张100以内的'质数表?
(2)汇报:
①根据质数的概念逐个判断。
②用筛选法排除。
③注意1既不是质数,也不是合数。
【课堂作业】
完成教材第16页练习四的第1~3题。
【课堂小结】
这节课,同学们又学到了什么新的本领?学生畅谈所得。
教学板书:
质数和合数
一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
1既不是质数,也不是合数。
教学反思:
教学质数与合数时,先复习了因数的概念,然后再让学生找出1~20各数的所有因数,并引导学生观察这些数的因数有什么不同,再进行分类,在此基础上引出了质数、合数的概念,学生对一些知识的掌握就会水到渠成,而且还会作出正确判断。
质数与合数的教案6
教学目标:
1、使学生理解质数、合数的意义,会判断一个数是质数还是合数。
2、培养学生观察、比较、概括和判断能力。
3、通过质数与合数两个概念的教学,向学生渗透“对立统一”的辩证唯物主义的观点。
教学重点:
理解质数和合数的意义。
教学难点:
判断一个数是质数还是合数的方法。
教学过程:
课前谈话:
给教室里的人分类。体会:同样的事物,依据不同的分类标准,可以有多种不同的分类方法。明确:分类的标准很重要。
一、复习旧知
说一说,在我们学习的空间,你可以得到哪些数?(要求与同学说的尽量不重复)
给这些自然数分类。根据自然数能不能被2整除,可以分成奇数和偶数两类。
板书对应的.集合图。
自然数
(能不能被2整除)
把学生列举的数填写在对应的集合圈里。
问:看了集合图,你想说什么么?(学生看图说自己的想法,复习奇数和偶数的有关知识)
说明:这是一种有价值的分类方法,在以后的学习中很有用。
问:想不想学一种新的分类方法?关于新的分类方法,你想知道些什么?
二、进行新课
今天我们就用找约数的方法来给自然数分类。
复习:什么叫约数?怎样找一个数所有的约数?
同桌合作,找出列举的各数的所有的约数。(同时板演)
引导学生观察:观察以上各数所含约数的个数,你能把它们分成几种情况!
根据学生的回答板书。
自然数
(约数的个数)
(只有两个约数)(有3个或3个以上的约数)
二、进行新课
引导学生思考:只含有两个约数的,这两个约数有什么特点?引出约数的概念。
明确合数的概念,提问:合数至少有几个约数?想一想:1的约数有哪几个?它是质数吗?它是合数吗?
明确:这是一种新的分类方法。看了集合圈,你想说什么?(学生看图说自己的想法,巩固奇数和合数的知识)
猜一猜:奇数有多少个?合数呢?
明确:因为自然数的个数是无限的,所以,奇数和偶数的个数也是无限的。运用新知,解决问题。
出示例1下面各数,哪些是质数?哪些是合数?
152831537789111
学生独立完成。
问:你是怎么判断的?
明确:可以找出每个数所有的约数,再根据质数和合数的意义来判断;一个数,只有找到1和它本身以外的第三个约数,就能判断这个数是合数还是质数。不必找出所有的约数来,这样可以提高判断的效率。
说明:判断一个数是不是质数还可以查表。100以内的质数比较常用,看书本上的100以内的质数表。用质数表检查对例1的判断是否正确。
完成练一练。
三、练习巩固
1、检查下面各数的约数的个数,指出哪些是质数哪些是合数,再用质数表检查。
22293549517983
2、出示2到50的数。先划掉2的倍数,再依次划掉3、5、7的倍数(但2、3、5、7本身不划掉。)
学生操作后,提问:剩下的都是什么数?
告诉学生:古代的数学家就是用这样的方法来找质数的。
四、全课总结
学到这里,一种新的分类方法,你掌握了吗?学生回答;相机揭示课题,质数和合数
讨论:质数、合数、奇数、偶数之间是怎样的关系呢?
五、布置作业(略)。
质数与合数的教案7
一、学习目标
(一)学习内容
《义务教育教科书数学》(人教版)五年级下册第14页质数与合数的概念及例1。对于质数合数的概念,教材通过让学生找出1~20各数的全部因数,然后按因数的个数分类,在此基础上给出概念。例1是让学生运用质数的概念找出100以内的所有质数。由于小学用到的质数比较少,所以教材只要求找出100以内的质数,这些质数不必要求学生都背,但是熟悉20以内的质数是必须的。
(二)核心能力
在认识质数与合数的过程中,培养观察、分析、归纳的能力;在找100以内质数的过程中,学会有条理的分析和解决问题。
(三)学习目标
1、通过观察引导、归纳推理,理解质数(素数)和合数的意义,会正确判断一个数是质数还是合数。
2、根据质数合数的意义,找出100以内的质数,学会有条理的分析和解决问题,并能熟练判断20以内的数哪个是质数,哪个是合数,
(四)学习重点
质数、合数的意义
(五)学习难点
正确掌握判断质数和合数的方法。
(六)配套资源
实施资源:《质数和合数》名师教学课件、百数表
二、教学设计
(一)课前设计(课前复习)
(1)找出1~20各数的因数。
(2)观察找出的1~20各数的因数,看看它们的个数有什么规律?
(二)课堂设计
1、谈话引入
师:学号是每位同学在这个班级的数字代号,每个人对自己学号的数字都会有特殊的感情,是吗?谁愿意用学过的知识来介绍自己的学号是个怎样的数呢?
师:刚才很多同学在介绍学号时很多用到了奇数和偶数的知识,请学号是奇数的'同学站起来。哪些人学号是偶数呢?都站过了吗?可见自然数可以怎样分类?分类依据是什么?
师:这节课我们换个角度,通过研究因数进一步来研究自然数,看看是否有新的发现。
2、问题探究
(1)认识质数和合数
①引导观察,分类思考
师:课前大家都找出了1~20各数的全部因数,谁来展示一下。
生展示引导学生评价是否正确。
师:现在请所有同学一起来观察大屏上(课件出示)这些数字的所有因数,看看你发现了什么?
师:按照每个数的因数的个数,(板书:按因数的个数)可以分为哪几种情况?并说说你为什么这样分?
全班交流,归纳小结。
可以分成三类:
有一个因数:1
有两个因数:2、3、5、7、11、13、17、19
有两个以上因数:4、6、8、9、10、12、15、16、18、20
②认识质数
师:先观察只有两个因数的特征,他们的因数有什么特点呢?
(出示:只有1和它本身两个因数)
师:我们给这样的数取名为:质数(或素数)(课件出示)一个数,如果只有1和它本身两个因数,这样的数叫做质数。
师:谁能举出几个质数的例子,并说说为什么是质数。举得完吗?说明了什么?(质数有无数个)
师:最小的质数是几?最大的呢?
③认识合数
师:再看4、6、9、10等这一类的数,它们的因数跟质数的因数比较,有什么不同呢?
引导小结:除了1和它本身以外,还有别的因数。
师:我们给这样的数取名为:合数。(板书:合数)(课件出示)一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
师:谁再举出几个合数的例子?举得完吗?说明了什么?(合数也有无数个)
想一想:最小的合数是几?最大的呢?
④1既不是质数也不是合数
师:现在还剩一个1,它是质数还是合数?
交流明确:1既不是质数,也不是合数。
⑤小结
师:按照因数个数的多少,自然数又可以分为哪几类呢?
明确:按照因数的个数,把自然数分为质数、合数和1三类。
【设计意图】通过课前找1~20各数因数,到课中观察因数的个数并发现问题,引导学生分类,从而引出概念。在理解概念的基础上,通过学生举例,进一步加强对概念的理解,明晰概念后,引导学生归纳小结,完善学生对自然数的分类方法的掌握,培养学生思维的灵活性。
(2)100以内的质数
师:如果请你们找出100以内的质数都有哪些,可以怎样来找?
生讨论汇报。
预设1:可以把每个数都验证一下,看哪些是质数。
预设2:先把2的倍数画去,但2除外,画掉的这些数都不是质数。3的倍数也可以……
师:你们认为哪种方法比较简便一些?(预设2的方法)
引导小结:利用百数表和2、3、5倍数的特征,选用筛除法去找质数。
四人小组合作,利用百数表找出100以内的质数,并思考:在找的过程中,画到几的倍数就可以了?
全班交流汇报,教师课件演示。
【设计意图】本环节主要依托小组活动,先制定找的方法,然后实际操作。在找的过程中不断加强对所学知识的理解和综合应用,帮助学生构建完整的知识体系,培养学生良好的数感。
(3)沟通联系,形成能力
师:通过今天的学习,自然数都可以怎样分类?
学生交流后,明确:
自然数按因数的个数分为:质数、因数和1;
自然数按是否是2的倍数分为:奇数和偶数。
师:请大家结合所学的这些知识介绍自己的学号。
随机抽取学生介绍,并适时拓展。
3、巩固练习
(1)将下面各数分别填入指定的圈里。
27 37 41 58 61 73 83 95
11 14 33 47 57 62 87 99
(2)下面的说法正确吗?说说你的理由。
①所有的质数都是奇数。
②所有的偶数都是合数。
③所有的奇数都是质数。
④所有的合数都是偶数。
辨析:
①所有的质数都是奇数
学生举反例反驳。
引导:你是怎样很快的找到这个数的,能说说方法吗?
交流,明确:先写出所有的质数,再找其中不是奇数的。
板书找的过程,并标注特殊数。
引申:这句话怎样改就对了?
交流,明确:除2外,所有的质数都是奇数。
辨析:“所有的偶数都是合数”、“所有的奇数都是质数”、“所有的合数都是偶数”。
学生分组辨析,每两大组辨析其中的一句话。
小组合作,用刚才列举的方法找到特殊数。
小组代表上台板演辨析的过程。
对比,明确:
除2外,所有的质数都是奇数,所有的偶数都是合数;
因为9、15等特殊数的存在,“所有的奇数都是质数,所有的合数都是偶数”是错的。
(3)括号内填入正确的质数。
15=()+()18=()+()
22=()+()49=()×()
4、全课总结
师:通过今天的学习你有什么收获?
小结:知道自然数按因数的个数的多少,可以分为三类:质数、合数和1,并且知道质数和合数的定义。
(三)课时作业
(1)填空。
①在1~9这9个自然数中,相邻的两个质数是()和(),相邻的两个合数是()和()。
②一个三位数,百位上的数是最小的合数,十位上的数是最小的奇数,个位上的数既是质数又是偶数,这个三位数是()。
答案:①2和3;8和9 ②412
解析:综合应用概念,熟练找出10以内的质数和合数。【考查目标1、2】
(2)老师家的电话号码是多少?
①八位号码从左到右排列,第一位上的数是既是2的倍数又是3的倍数的最小一位数。
②第二位上的数是最小的质数;第三位是最小的合数;第四位上的数既不是质数也不是合数。
③第五位上是小于10的最大合数;第六位上是最大的一位数;第七位上是自然数中最小的奇数;最后一位上是8的最大因数。
答案:62419918。
解析:综合练习题目,既复习因数、倍数的概念及找因数倍数的方法,又巩固质数、合数的概念,培养学生的数学推理能力。【考查目标2、3】
质数与合数的教案8
教学目标
1.理解质数、合数的概念和判断方法,能灵活选择方法判断一个数是质数还是合数。
2.引导学生通过动手操作、观察比较、猜想验证、归纳总结出质数、合数的含义。
3.培养学生分析问题的能力和应用数学的意识;体验从特殊到一般的认知发展过程,进一步完善学生对自然数的分类方法的掌握,培养学生思维的灵活性。
教学重难点
1.掌握质数与合数的概念。
2.熟练记忆100以内的质数。
教学过程:
一、复习导入
1.什么叫奇数?什么叫做偶数?
是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。最小的奇数是1,最小的偶数是0。
2.请说一说20和5的因数各有哪些?
有的数的因数个数多,有的数因数个数少。一个数最小的因数是1,最大的因数是它本身。
【设计意图】
通过练习找一个数的.因数,让学生明白一个数的因数的个数是有多有少的,初步让学生知道按因数的个数分类怎么分。
二、探究新知
1.找出1~10各数的因数。
1的因数有:1。
2的因数有:1,2。
3的因数有:1,3。
4的因数有:1,2,4。
5的因数有:1,5。
6的因数有:1,2,3,6。
7的因数有:1,7。
8的因数有:1,2,4,8。
9的因数有:1,3,9。
10的因数有:1,2,5,10。
2.按因数的个数分,你可以分成几类?
只有一个因数:1
只有两个因数:2、3、5、7
有两个以上个因数:4、6、8、9、10
3.明确概念:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。如2,3,5,7都是质数。一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。4,6,15,49都是合数。
注意:
1不是质数,也不是合数。
4.100以内的质数表。
5.100以内质数顺口溜。
2和3,5和7,11、13又17,
19、23、29、31,37和41,
43、47、53、59、61,67和71,
73、79、83、89、97.
【设计意图】
通过质数表和顺口溜让学生熟练记住100以内的质数。
6.想一想:最小的质数和最小的合数分别是多少?
三、课堂练习
1.判断下面说法是否正确?
(1)所有的偶数都是合数。
(2)所有的奇数都是质数。
(3)3的所有倍数都是合数。
(4)一个合数,最少有3个因数。
(5)1既不是质数,也不是合数。
2.将下面各数分别填入指定的圈里。
2737415861738395
11143347576287999
3.思维训练。
两个质数,和是9,积是多少?
四、课堂总结
通过本节课学习你有哪些收获?
教后思考:
质数与合数的教案9
教学内容:人教版九年义务教育六年制小学数学第十册 P58~59页
教学目标:
1、使学生理解质数、合数的意义,会判断一个数是质数还是合数。
2、培养学生观察、比较、概括和判断的能力。
3、通过质数与合数两个概念的教学,向学生渗透“对立统一”的辩证唯物主义的观点。
教学重点:理解质数和合数的意义。
教学难点:判断一个数是质数还是合数的方法。
教具:多媒体课件。
教学过程:
一、准备复习,创设情境。
1、求7和10的约数。
2、25有几个约数?
二、探究发现,理解新知。
(一)教学例1
1、出示例1,写出下面每个数所有的约数(1~12)。
(1)先小组合作完成例一,分别填出每个数的所有的约数,并指出各有几个约数。
(2)例1反馈。
(3)同学们观察一下这些数约数的特点:
思考:在自然数范围内,按照每个数的约数个数的特点进行分类,可以分为哪几类?
先独立分类,再小组交流。
(4)学生汇报分类情况。
2、比较每类数约数的特点,教学质数与合数的定义。
(1)先观察有2个约数的.数。
谁能发现,它们的约数有什么特点呢?
归纳特点,给出质数的定义。
(2)第三种类型的数与质数的约数比较,又有什么不同?
概括合数的定义。
(3)1既不是质数,也不是合数。
(4)举出质数的例子?
(5)举出合数的例子。
3、自然数按照每个数的约数的多少,又可以怎样分类?
(二)教学例2
1、出示例2。判断下面各数,哪些是质数,哪些是合数?
17、22、29、35、37、87。
(1)同桌先交流一下,再汇报。
(2)37为什么是质数?87为什么是合数?
(3)小结。
(三)看书质疑
(四)游戏。
(五)出示100以内质数表。学生练习记质数。
三、巩固练习,发展提高。
1、在自然数1~20中:
(1)奇数有————,偶数有————;
(2)质数有————,合数有————。
2、下面的判断对吗?
(1)所有的奇数都是质数。( )
(2)所有的偶数都是合数。( )
(3)在自然数中,除了质数都是合数。( )
(4)一个合数,至少有3个约数。( )
3、猜一猜,老师的电话号码是多少。
四、总结。(略)
五、作业:62页1~2。1
质数与合数的教案10
一、学情分析:
《质数和合数》这一课内容比较抽象,很难结合生活实例或具体情境来教学,学生理解起来有一定的难度。另外,到本节课为止,已经出现了因数、倍数、奇数、偶数、质数、合数等概念,有些概念学生容易混淆,如学生往往把质数和奇数,合数和偶数的概念弄混,教学时应注意让学生辨析这些概念。
二、教学目标:
1、理解质数和合数的概念。
2、能熟练判断质数与合数,能够找出100以内的质数。
3、培养学生分析问题的能力和应用数学的意识;体验从特殊到一般的认识发展过程,进一步完善学生对自然数的分类方法的掌握,培养学生思维的灵活性。
三、教学重难点:
重点:理解质数、合数的含义,能正确快速地判断一个数是质数还是合数。
难点:能运用一定的方法,从不同的角度判断、感悟质数合数。
四、教学过程:
一、导入新课。找出1~20各数的因数。
你发现了什么?
(学生可能回答:1只有1个因数,其余的数都有2个以上因数;2,3,5,7,11,13,17,19这些数的因数都只有1和它本身;……。)
今天我们学习的内容就与一个数因数的个数有关。
[设计意图说明:让学生用自己的话描述1~20各数因数的特点,通过观察学生虽然没有质数与合数的概念,但对这些数已经有了自己的分类与认识,为之后的分类与概念的学习打下基础。]
二、新授
探究一:认识质数和合数
师:请同学们按照因数的个数,将这些数分分类。
(学生可能回答:将1,2,3,5,7,11,13,17,19分为一类,它们的因数都是1和它自己本身,其余的数分为一类;将1,4,9,16分为一类,它们的因数个数都是奇数个,其余的分为一类,它们的因数个数都是偶数个;……)
师:同学们都说得非常好,请打开课本翻到第14页,请你按照它的方法分一分。
师:一个数,如果只有1和它本身两个因数,这样的数叫作质数(或素数)。上面这些数中,哪些数是质数(素数)?为什么?
(学生可能回答:2是质数,它的因数只有1和2;3是质数,它的因数只有1和3;2,3,5,7,11,13,17,19都是质数,它们的因数都只有1和它们本身;……。)
师:1是质数吗?
(学生回答:1是质数,它的因数只有1和它本身;1不是质数,1的因数只有1个,质数有2个因数;……。)
师:一个数,如果除了1和它本身还有别的`因数,这样的数叫作合数。上面这些数中,哪些数是合数?为什么?
(学生可能回答:4是合数,除了1和4以外,2也是4的因数;6是合数,除了1和6以外,6的因数还有2和3;……。)
师:1是合数吗?
(学生可能回答:1不是合数,它只有1个因数1。)
小结:1不是质数,也不是合数。
师:你还能找出其他的质数和合数吗?
(学生举例并说明理由)
[设计意图说明:质数和合数的定义可以教师直接给出,也可以让学生自己看书自学,这里的重点是要让学生理解定义,根据定义判断一个数(除了1)是质数还是合数。学生在一开始可能会将1归为质数,这时要提醒学生仔细理解定义中“两个因数”的含义。在小结和板书中也要强调,1不是质数,也不是合数。]
探究二:找出100以内的质数,做一个质数表。(课本P14例1。)
(媒体出示图表)
师:你有什么好方法?
(学生回答:先把偶数去掉,它们除了1和本身外,一定还有因数2(教师提示2是质数,不能去掉);除了5以外,个位是5,0的数先去掉;……。)
师:利用我们之前学习到的知识,可以先将2,3,5的倍数划掉(不包括2,3,5)。一直可以划到几的倍数?
(学生可能回答:50的倍数,51的2倍是102,超过100了。)
(学生制作100以内的质数表。)
[设计意图说明:由于小学用到的质数比较少,所以教材中只要求学生找出100以内的质数。这些质数不必要求学生都背熟,但是熟悉20以内的质数还是有必要的。]
三、练习
(课本P16∕练习四第一、二题。)
四、小结:
1、一个数,如果只有1和它本身两个因数,这样的数叫作质数(或素数)。
2、一个数,如果除了1和它本身还有别的因数,这样的数叫作合数。
3、1不是质数,也不是合数。
五、作业
P16第三、四、五题。
附板书设计:
质数与合数
因数个数
1 1个
自然数质数(素数):只有1和它本身两个因数。 2个
合数:除了1和它本身还有别的因数。 2个以上
1既不是质数,也不是合数。
质数与合数的教案11
教学目标:使学生理解质数与合数的饿意义,掌握判断质数合数的方法,
教学过程:
一、复习
约数的概念,找约数的方法。
二、引入新课
例1写出下面每一个自然数的全部约数,在根据约数的个数,把这些自然数进行分类。
自然数约数
11
21、2
51、5
91、3、9
111、11
121、2、3、4、6、12
171、17
201、2、4、5、10、20
381、2、19、38
451、3、5、9、15、45
(1)找约数
(2)按照约数的多少进行分类?
(3)讨论:1是什么数?
最小的质数是几?
最小的合数是几?
三、巩固练习
1、练一练
第一题,练习判断一个数是质数还是合数。
分析:怎样去判断一个自然数是质数还是合数
2、试一试
第三题判断下面各题,正确的在括号里打对,不正确的打错。
四、总结归纳
1、使学生弄清奇数与质数,偶数与合数是不同的概念
五、布置作业
反思:对于本节课的知识学生还好理解,但当把自然数的另一个分类混合的.时候学生的概念就出现了混乱。所以我们的教学不能光着眼于学生会不会做这些题目,而是应该真正的了解把自然数分成1、质数、合数的理由是什么。并懂的与偶数、奇数的分类是不同的理由,也就是两个不能相等的概念。并渗透一种交叉的概念。
质数与合数的教案12
【设计理念】
数学课程标准明确指出,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。本节课抓住关键词,把握自然数(0除外)按因数个数分类的数学方法,让学生充分讨论质数和合数的特征,经历质数和合数这一知识的发生发展过程,通过观察、比较、分析、归纳,构建质数和合数概念,更好地掌握数学思想,提升学生学习数学的兴趣,培养良好的学习态度。
【教学内容】
人教版五年级下册第23~24页“质数与合数”。
【学情与教材分析】
本课是在学生掌握“因数、倍数、奇数、偶数、2、3、5的倍数特征”的基础上进行的。本单元涉及的概念多,“质数与合数”是一节概念教学课,概念抽象易混淆,在生活中运用较少,与学生的生活有一定的距离,是本课的难点也是本单元内容教学的难点。
【教学目标】
1.让学生经历操作、观察、发现、概念归纳的数学化过程,构建质数和合数概念。
2.把握整数按因数个数的分类法,理解和掌握质数与合数的特征,能应用概念寻找或判断质数。
3.通过研究质数与合数特征的学习活动,体会学习数学的思想方法。
【教学准备】
课件;练习纸每生一张。
【教学过程】
活动一:构建质数和合数概念
1.引导学生按要求列出乘法算式:“因数用整数、不用1”。
教师板书“1=”……“20=”,教师不言语,用手势引导学生按要求说出乘法算式。
学情预设:学生中可能出现用1或小数的问题,师用手势提醒“不用1”“用整数”。
2.师:按“用整数、不用1”的要求无法列出乘法算式的数,我们叫它质数;可以列出乘法算式的数,我们叫它合数。
教师依次在这些质数的前面填上“质数”、“合数”,学生自然而然的在教师板书时说出“质数”和“合数”。
【设计意图】
“活动一”全过程教师基本不言语,只用手势或神情来组织教学,给学生一个神秘感,在创设静谧的氛围中静心体会质数与合数的区别。
活动二:讨论质数和合数的特征
1.师:“从这些乘法算式中,你发现了什么?
学情预设:学生有可能说出质数都是奇数;对策:教师指出2是质数、15是合数;
合数可以写出乘法算式;如果不用1,质数无法写出乘法算式。
2.教师擦除“不用1”,学生列出相应的乘法算式,再进一步用因数的个数来探讨质数和合数的概念。
师:观察因数的个数,你又发现了什么?
从乘法算式中,学生很快并能清晰地发现质数只有1和它本身两个因数,而合数则除了1和它本身两个因数外,还有别的因数(至少三个因数)。
3.根据学生回答板书。
4.讨论:“1”是质数还是合数?
学情预设:有的学生可能认为:1有两个因数,一个是1,一个是它本身,1应该是质数;有的学生可能认为:1的本身还是1,所以1应该只有一个因数;有的学生可能认为:1既不是质数也不是合数。
师把板书写完整。
5.小结:谁能用自己的语言说一说什么样的数叫质数?什么样的数叫合数?怎样判断一个数是质数还是合数?
【设计意图】
预留足够的时间让学生经历操作、观察、发现、概念归纳的数学化过程,构建质数和合数概念。并尝试根据因数的个数归纳出质数与合数的概念,学会运用质数和合数的特征进行判断,充分感受到知识之间既有区别,又有联系。
活动三:应用概念寻找或判断质数
1.继续寻找30以内的其它质数。
2.做一做:出示数字卡片:17、22、29、35、37、87、93、96、1,将数字卡片填入质数与合数相应的集合圈里。
3.下面的说法正确吗?说说你的理由。
⑴所有的奇数都是质数。()
⑵所有的`偶数都是合数。()
⑶在1、2、3、4、5……中,除了质数以外都是合数。()
⑷两个质数的和是偶数。()
【设计意图】
通过不断的寻找、发现与判断质数的练习中,使学生意识可以用合理的方法来判断,巩固质数与合数特征的认识。
活动四:拓展延伸深化概念
1.你知道他们各是多少吗?(在小组内交流各自的想法后汇报)
⑴两个质数的和是10,积是21,他们各是多少?
⑵两个质数的和是20,积是91,他们各是多少?
⑶最小的质数是?最小的合数是?
2.在括号里填上质数:
8=()+()12=()+()28=()+()
3.数学小阅读:哥德巴赫猜想。
同学们你们知道吗,刚才你们正在尝试解决一道世界难题,做了一件很有价值的事,这个世界难题就是:是不是所有大于2的偶数,都可以写成两个质数的和呢?这个问题是德国数学家哥德巴赫最先提出的,所以被称为哥德巴赫猜想。世界各国的数学家都想攻克这一难题,但至今还未解决。我国数学家陈景润在这一领域已经取得了举世瞩目的成果。
请同学们进行数学小阅读:哥德巴赫猜想。课后,感兴趣的同学们也可以查找相关书籍或上网查阅相关资料。
【设计意图】
在适度拓展中,尝试解决“任何大于2的偶数,都可以写成两个质数的和”的哥德巴赫猜想。在数学小阅读中,让学生了解数学发展的历史,感受数学文化的魅力,同时留有空间,让学生课后探究。
活动五:总结
这节课你有哪些收获?
质数与合数的教案13
教学目标
1.通过探究知道两书之和的奇偶性。
2.能借助几何直观,认识两数之和奇偶性的必然性。
3.培养探究能力,积累观察、猜想、归纳等思维活动的经验,丰富解决问题的策略。
重难点
重点:在探究知道两书之和的奇偶性的过程中渗透解决问题的策略。
突破方法:猜想、探究、讨论的过程中理解解决问题的策略。
难点:认识两数之和奇偶性的必然性。
突破方法:举例验证中掌握两数之和奇偶性的必然性。
教学准备:课件,两种颜色的小正方形各10个
教学过程
一、创设情境,点评激思
活动一:激趣导入
1.复习概念,引入图示。
(1)说说什么样的数是奇数和偶数?
(2)偶数可以用字母表示为?奇数呢?
2.用1个小正方形表示1,一个接一个摆成两行,偶数总能摆成一个什么图形?奇数呢?
【设计意图:】:复习奇数和偶数的概念,为学习新知做组准备。
活动二:游戏导入
1.游戏规则:一个同学转,指针指到那个数,就加上这个数的本身。和是奇数有大奖,和是偶数没有奖
2.学生尝试玩游戏
3.提问思考:为什么没有人得大奖?
【设计意图:】:学生在玩游戏的过程中感知两数之和的规律
二、引导探究,互评对话
活动一:探索验证
1.明确探究的问题:刚才的游戏,一个数加上它本身只有两种情况,偶数+偶数,奇数+奇数。要全面研究,还有什么情况?
偶数+奇数
2.用自己想到的方法探究两数之和的奇偶性。可以用举例的方法得出结论,也可以用小正方形拼一拼、想一想,为什么是这个结论。可以独立完成,或者同坐合作。注意做好记录
3.全班交流、讨论。
(1)用举例的'方法验证。
(2)用小正方形拼摆的方法验证
【设计意图:】让学生自己动手想办法,寻找规律,经历过程,从而能找到两数之和的规律。
活动二:归纳结论
1.教师板书结论:偶数+偶数=偶数奇数+奇数=偶数
偶数+奇数=奇数
2.举例验证规律
3.用今天学的规律解释前面的游戏。
活动三:巩固练习,内化新知
1.填空:
奇数+偶数=()奇数-偶数=()
偶数+偶数+偶数=()奇数+奇数+奇数+()
.10个偶数想家的和是(),10个奇数相加的和是()
2、小明爸爸、妈妈今年的岁数和是奇数,几年后小明爸爸、妈妈岁数的和是奇数还是偶数?
【设计意图:】:及时练习,让学生对新学的内容得以巩固,内化所学的知识,掌握两数之和的规律,能灵活运用
三、梳理总结,赏评延展
活动一:
课堂小结
今天这节课我们学习了什么内容?你能说出奇数、偶数相加的规律吗?这些规律我们是怎样探究出来的?
活动二:作业
练习四的3、5、7题
【设计意图:】:安排以上几个练习,让学生独立思考,可以了解学生的学习掌握情况,学生也可以从练习中体验到学习的快乐。
四、板书设计
两数之和的奇偶性
偶数+偶数=偶数
奇数+奇数=偶数
偶数+奇数=奇数
质数与合数的教案14
教学目的:
1、使学生理解质数和合数的概念,能正确地判断一个数是质数还是合数。
2、培养学生观察、比较、抽象、慨括的能力。
3、培养学生自主探究的精神和独立思考的能力。教学重点:质数和合效的概念。
教学难点:质数、台数、济数、偶数的区别
教学过程:
课前谈话:
给教室里的人分类。体会:同样的事物,依据不问的分类标准,可以有多种小的分类方法。明确:分类的际准很重要。
一、复习旧知
说一说,在我们学习的空间,你可以得到那些数?(要求与同学说的尽也不重复)
给这些自然数分类。根据自然数能不能被2整除,可以分成新数和偶数两类。
板书对应的`集合图。
自然数
(能不能被2整除)
把学生列举的数填写在对应的集合圈里。
问:看了集合图,你想说什么么?(学生看图说自己的想法,复习奇数和偶数的有关知识)
说明:这是一种有价值的分类方法,在以后的学习中很有用。
问:想不想学一种新的分类方法?关于新的分类方法,你想知道些什么?
二、进行新课
今天我们就用找约数的方法来给自然数分类。
复习:什么叫约数?怎样找一个数所有的约数?
同桌合作、找出列举的各数的所有的约数。(同时板演)
引导学生观察:观察以上各数所含的数的个数,你能把它们分成几种情况‘!
根据学生的回答板书。
自然数
(约数的个数)
(只有两个约数)(有3个或3个以上的约数)
引导学生思考:只含有两个约数的,这两个约数有什么特点?引出约数的概念。
明确合数的概念、提问:合数至少有几个约数?想一想:1的约数有哪几个?它是质数吗?它是合数吗?
明确:这是一种新的分类方法。看厂集合圈,你想说什么?(学生看图说自己的想法,巩固寺数阳台数的知识)
猜一猜:奇数有多少个?合数呢?
明确:因为自然数的个数是无限的,所以,新数阳偶数的个数也是无限的。运用新知,解决问题。
出示例1 下面各数,哪些是质数?哪些是合数?
15 28 31 53 77 89 1ll
学生独立完成。
问:你是怎么判断的?
明确:可以找出每个数所有的约数,再根据质数和合数的意义来判断;一个数,只有找到1和它本身以外的第三个约束,就能判断这个数是合数还是质数。不必找出所有的约数来,这样可以提高判断的效率。
说明:判断一个数是不是质数还可以查表。100以内的质数比较常用,看书本上的100以内的质数表。用质数表检查对例子1的判断是否正确。
完成练一练。
三、练习巩固
1、坚持下面各数的约数的个数,指出哪些是质数哪些是合数,再用质数表检查。
22 29 35 49 51 79 83
2、出示2到50的数。先划掉2的倍数,再依次划掉3、5、7的倍数(但2、3、5、7本身不划掉。)
学生操作后,提问:剩下的都是什么数?
告诉学生:古代的数学家就是用这样的方法来找质数的。
四、全课总结
学到这里,一种新的分类方法,你掌握了吗?学生回答:相机揭示课题,质数和合数
讨论:质数、合数、奇数、偶数之间是这样的关系呢?
五、布置作业(略)。
质数与合数的教案15
我说课的内容是人教版课程标准实验教材五年级下册《质数与合数》。
我准备从以下几个方面阐述《质数与合数》基于网络环境下的教学设计。
教学分析;
教学目标及重难点;
教学过程及整合点分析;
教学效果。
一、教学分析
《质数与合数》是本册教材第二单元最后一个知识。 它是在学生已经掌握了因数和倍数的意义,了解了2、5、3倍数的特征之后学习的又一重要内容,为学习求最大公因数和最小公倍数以及约分,通分打下基础,在本章教学内容中起着承前启后的重要作用。Internet网上有关质数与合数的相关资源非常丰富也非常有吸引力,这就使本节课与信息技术进行整合成为可能。 同时,我校是全国现代信息技术实验学校,五年级学生早已具有网上搜索、交流的能力,为此我设计了《质数与合数》的专题网站,将网络中散落的资源进行整合与集中,便于学生查阅。
二、教学目标及重难点
根据本课的具体内容、《数学课程标准》的有关要求和学生实际,我确定了以下三个教学目标:
1、知识与技能目标:
掌握质数与合数的概念,并能根据概念正确判断一个数是质数还是合数。
2、过程与学习方法目标:
通过自主探索、观察、比较,经历对自然数的分类和概念揭示,体验数学问题
的研究过程。
3、情感与态度目标:
在学习过程中,让学生感受现代信息技术的优越性,增进合作交流意识。
教学重点:
质数与合数的概念。
教学难点:
正确判断质数和合数。
三、教学过程及整合点分析
《数学课程标准》指出:“教师要引导学生投入到探索与交流的学习活动中”。根据本课特点以及维果茨基的“最近发展区”理论,我采用自主探索的学习方法,引导学生充分利用网络进行合作探究,自主学习,从而培养学生主动获取知识的能力。基于此,我设计了以下四个教学环节。
(一):情景设疑, 激发兴趣
爱因斯坦曾经说过:“兴趣是最好的老师”。我利用学生的好奇心,从生活实际出发创设情景:如果我们把教室里的孩子分一分类,可以怎样分呢?一石激起千层浪,学生们思维活跃,很快找到了各种不同的分类,在此基础上我引导学生通过思考得出:分类的标准不同,分类的情况也就不同。这样的设计充分调动了学生的学习积极性,激发了学生的学习动机,学生主动学习的氛围得到了良好的营造。这时引入我们要研究的课题“质数与合数”已是水到渠成。
(二):网上交流,自主探究
为了给自然数的分类作好准备,我顺势提出要求:请找出你们学号的因数,并发到论坛上。这样利用论坛使每个单一的信息迅速汇集到一起, 大大增加了信息量,便于学生从丰富的信息中观察因数个数的特点。这样设计不仅提高了课堂的效率,而且通过多媒体教室的转播,学生的演示,更有利于生生之间和师生之间的交流,学生能利用论坛相互了解自己的不同发现,感受思维的多样性,使课堂上的探究真正落到实处。
接下来,根据学生自己的观察、思考和发现,教师提出:你认为自然数按照约数个数的多少可以分成几类?学生立即在网上进行投票,教师通过网络能收到及时准确的信息反馈,了解每个同学的'不同意见。最大限度的尊重了学生学习的差异性。教师马上提出:“那数学家按照这个标准是怎样分类的呢?”学生通过看书自学,迅速知道了自然数的另一种分类,理解了质数与合数的概念。学生立即运用概念对自己与他人的学号进行判断。这样的设计,让学生轻松愉快的掌握了质数与合数的概念,不仅突出了本课的重点,而且学生主动学习的能力也得到了培养和提升。
此时,我没有让学生直接学习“筛法”,而是对教材进行了大胆的处理,教材的编排比较抽象、枯燥,学生不易理解,也要花费大量的学习时间,不利于提高课堂效率。我把“筛法”在网站上动态的展示出来。声音、文字、图象的感官刺激,化抽象为具体,正符合学生的心理。使学习化被动为主动,学生能轻松的理解知识,从而切实激发学生发自内心的学习兴趣,激活思维,真正达到“快乐学习”的目的。利用网站有效的突破了本课的难点。
(三):网上练习,分层巩固
专题网站设计了“学习天地” ;“考考你” ;“智力快车”等练习,按照教学要求和进度安排不同层次的学习和训练。在学习和交互练习中,人机交互可以是有快有慢的、有难有易的。学生可以得到网络及时评价,因而既可充分照顾学生的个别差异性,又最大限度地调动了学生的学习兴趣与积极性。学生因需要而学习,达到了因材施教的目的。
(四):回顾总结,拓展延伸
最后全课总结。这对于帮助学生理清脉络,巩固知识,加深记忆,活跃思维、发展兴趣都具有重要作用。
四、教学效果
总之,本课利用计算机网络资源进行学习,增加了信息量,扩大了学习活动的自由空间,落实了因材施教,不仅高效地完成了本节课的学习任务,而且同学们的信息素养的到了培养。他们不但掌握了质数和合数的概念,还能用多种方法进行判断。网络环境给数学教学带来前所未有的生机与活力。
【质数与合数的教案】相关文章:
《质数与合数》教学反思04-26
「原创」质数和合数教学反思10-21
《质数和合数》的教学反思(通用14篇)02-22
《质数和合数》教学反思范文(通用15篇)02-24
素数合数复习教案12-17
质数10-25
乘除混合数学教案02-11
课题:等腰梯形的性质数学教案12-17
分数的基本性质数学教案08-26