八年级数学教案(集合15篇)
作为一名优秀的教育工作者,时常要开展教案准备工作,教案有助于顺利而有效地开展教学活动。优秀的教案都具备一些什么特点呢?以下是小编整理的八年级数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。
八年级数学教案1
一、教学目标:
1、加深对加权平均数的理解
2、会根据频数分布表求加权平均数,从而解决一些实际问题
3、会用计算器求加权平均数的值
二、重点、难点和难点的突破方法:
1、重点:根据频数分布表求加权平均数
2、难点:根据频数分布表求加权平均数
3、难点的突破方法:
首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。
应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的好处是简化了计算量。
为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。
三、例习题的意图分析
1、教材P140探究栏目的.意图。
(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。
(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。
这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。
2、教材P140的思考的意图。
(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题
(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。
3、P141利用计算器计算平均值
这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比。一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器。所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单。统计中一些数据较大、较多的计算也变得容易些了。
四、课堂引入
采用教材原有的引入问题,设计的几个问题如下:
(1)、请同学读P140探究问题,依据统计表可以读出哪些信息
(2)、这里的组中值指什么,它是怎样确定的?
(3)、第二组数据的频数5指什么呢?
(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。
五、随堂练习
1、某校为了了解学生作课外作业所用时间的情况,对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表
所用时间t(分钟)人数
0 0<≤ 6 20 30 40 50 (1)、第二组数据的组中值是多少? (2)、求该班学生平均每天做数学作业所用时间 2、某班40名学生身高情况如下图, 请计算该班学生平均身高 答案1.(1).15. (2)28. 2. 165 六、课后练习: 1、某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表 部门A B C D E F G 人数1 1 2 4 2 2 5 每人创得利润20 5 2.5 2 1.5 1.5 1.2 该公司每人所创年利润的平均数是多少万元? 2、下表是截至到20xx年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖得主获奖时的平均年龄? 年龄频数 28≤X<30 4 30≤X<32 3 32≤X<34 8 34≤X<36 7 36≤X<38 9 38≤X<40 11 40≤X<42 2 3、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数。 答案:1.约2.95万元2.约29岁3.60.54分贝 平方差公式 学习目标: 1、能推导平方差公式,并会用几何图形解释公式; 2、能用平方差公式进行熟练地计算; 3、经历探索平方差公式的推导过程,发展符号感,体会特殊一般特殊的认识规律. 学习重难点: 重点:能用平方差公式进行熟练地计算; 难点:探索平方差公式,并用几何图形解释公式. 学习过程: 一、自主探索 1、计算:(1)(m+2) (m-2) (2)(1+3a) (1-3a) (3) (x+5y)(x-5y) (4)(y+3z) (y-3z) 2、观察以上算式及其运算结果,你发现了什么规律?再举两例验证你的发现. 3、你能用自己的语言叙述你的发现吗? 4、平方差公式的特征: (1)、公式左边的两个因式都是二项式。必须是相同的两数的和与差。或者说两 个二项式必须有一项完全相同,另一项只有符号不同。 (2)、公式中的.a与b可以是数,也可以换成一个代数式。 二 、试一试 例1、利用平方差公式计算 (1)(5+6x)(5-6x) (2)(x-2y)(x+2y) (3)(-m+n)(-m-n) 例2、利用平方差公式计算 (1)(1)(- x-y)(- x+y) (2)(ab+8)(ab-8) (3)(m+n)(m-n)+3n2 三、合作交流 如图,边长为a的大正方形中有一个边长为b的小正方形. (1)请表示图中阴影部分的面积. (2)小颖将阴影部分拼成了一个长方形,这个长方形的长和宽分别是多少?你能表示出它的面积吗? a a b (3)比较(1)(2)的结果,你能验证平方差公式吗? 四、巩固练习 1、利用平方差公式计算 (1)(a+2)(a-2) (2)(3a+2b)(3a-2b) (3)(-x+1)(-x-1) (4)(-4k+3)(-4k-3) 2、利用平方差公式计算 (1)803797 (2)398402 3.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示( ) A.只能是数 B.只能是单项式 C.只能是多项式 D.以上都可以 4.下列多项式的乘法中,可以用平方差公式计算的是( ) A.(a+b)(b+a) B.(-a+b)(a-b) C.( a+b)(b- a) D.(a2-b)(b2+a) 5.下列计算中,错误的有( ) ①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2; ③(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y)(x+y)=-x2-y2. A.1个 B.2个 C.3个 D.4个[来源:中.考.资.源.网WWW.ZK5U.COM] 6.若x2-y2=30,且x-y=-5,则x+y的值是( ) A.5 B.6 C.-6 D.-5 7.(-2x+y)(-2x-y)=______. 8.(-3x2+2y2)(______)=9x4-4y4. 9.(a+b-1)(a-b+1)=(_____)2-(_____)2. 10.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____. 11.利用平方差公式计算:20 19 . 12.计算:(a+2)(a2+4)(a4+16)(a-2). 五、学习反思 我的收获: 我的疑惑: 六、当堂测试 1、下列多项式乘法中能用平方差公式计算的是( ). (A)(x+1)(1+x) (B)(1/2b+b)(-b-1/2a) (C)(-a+b)(-a-b) (D)(x2-y)(x+y2)[ 2、填空:(1)(x2-2)(x2+2)= (2)(5x-3y)( )=25x2-9y2 3、计算: (1)(-2x+3y)(-2x-3y) (2)(a-2)(a+2)(a2+4) 4.利用平方差公式计算 ①1003997 ②14 15 七、课外拓展 下列各式哪些能用平方差公式计算?怎样用? 1) (a-b+c)(a-b-c) 2) (a+2b-3)(a-2b+3) 3) (2x+y-z+5)(2x-y+z+5) 4) (a-b+c-d)(-a-b-c-d) 2.2完全平方公式(1) 一、内容和内容解析 1.内容 三角形中相关元素的概念、按边分类及三角形的三边关系. 2.内容解析 三角形是一种最基本的几何图形,是认识其他图形的基础,在本章中,学好了三角形的有关概念和性质,为进一步学习多边形的相关内容打好基础,本节主要介绍与三角形的的概念、按边分类和三角形三边关系,使学生对三角形的有关知识有更为深刻的理解. 本节课的教学重点:三角形中的相关概念和三角形三边关系. 本节课的教学难点:三角形的三边关系. 二、目标和目标解析 1.教学目标 (1)了解三角形中的相关概念,学会用符号语言表示三角形中的对应元素. (2)理解并且灵活应用三角形三边关系. 2.教学目标解析 (1)结合具体图形,识三角形的概念及其基本元素. (2)会用符号、字母表示三角形中的相关元素,并会按边对三角形进行分类. (3)理解三角形两边之和大于第三边这一性质,并会运用这一性质来解决问题. 三、教学问题诊断分析 在探索三角形三边关系的过程中,让学生经历观察、探究、推理、交流等活动过程,培养学生的和推理能力和合作学习的精神. 四、教学过程设计 1.创设情境,提出问题 问题回忆生活中的三角形实例,结合你以前对三角形的了解,请你给三角形下一个定义. 师生活动:先让学生分组讨论,然后各小组派代表发言,针对学生下的定义,给出各种图形反例,如下图,指出其不完整性,加深学生对三角形概念的理解. 【设计意图】三角形概念的获得,要让学生经历其描述的过程,借此培养学生的语言表述能力,加深学生对三角形概念的理解. 2.抽象概括,形成概念 动态演示“首尾顺次相接”这个的动画,归纳出三角形的定义. 师生活动: 三角形的定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 【设计意图】让学生体会由抽象到具体的过程,培养学生的`语言表述能力. 补充说明:要求学生学会三角形、三角形的顶点、边、角的概念以及几何表达方法. 师生活动:结合具体图形,教师引导学生分析,让学生学会由文字语言向几何语言的过渡. 【设计意图】进一步加深学生对三角形中相关元素的认知,并进一步熟悉几何语言在学习中的应用. 3.概念辨析,应用巩固 如图,不重复,且不遗漏地识别所有三角形,并用符号语言表示出来. 1.以AB为一边的三角形有哪些? 2.以∠D为一个内角的三角形有哪些? 3.以E为一个顶点的三角形有哪些? 4.说出ΔBCD的三个角. 师生活动:引导学生从概念出发进行思考,加深学生对三角形中相关元素概念的理解. 4.拓广延伸,探究分类 我们知道,按照三个内角的大小,可以将三角形分为锐角三角形、直角三角形和钝角三角形,如果要按照边的大小关系对三角形进行分类,又应该如何分呢?小组之间同学进行交流并说说你们的想法. 师生活动:通过讨论,学生类比按角的分类方法按边对三角形进行分类,接着引出等腰三角形及等边三角形的概念,引导学生了解等腰三角形与等边三角形的联系,强化学生对三角形按边分类的理解. 一、教学目标 ①经历探索整式除法运算法则的过程,会进行简单的整式除法运算(只要求单项式除以单项式,并且结果都是整式),培养学生独立思考、集体协作的能力。 ②理解整式除法的算理,发展有条理的思考及表达能力。 二、教学重点与难点 重点:整式除法的运算法则及其运用。 难点:整式除法的运算法则的推导和理解,尤其是单项式除以单项式的运算法则。 三、教学准备 卡片及多媒体课件。 四、教学设计 (一)情境引入 教科书第161页问题:木星的质量约为1。90×1024吨,地球的质量约为5。98×1021吨,你知道木星的质量约为地球质量的多少倍吗? 重点研究算式(1。90×1024)÷(5。98×1021)怎样进行计算,目的是给出下面两个单项式相除的模型。 注:教科书从实际问题引入单项式的除法运算,学生在探索这个问题的过程中,将自然地体会到学习单项式的除法运算的必要性,了解数学与现实世界的联系,同时再次经历感受较大数据的过程。 (二)探究新知 (1)计算(1。90×1024)÷(5。98×1021),说说你计算的根据是什么? (2)你能利用(1)中的方法计算下列各式吗? 8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。 (3)你能根据(2)说说单项式除以单项式的运算法则吗? 注:教师可以鼓励学生自己发现系数、同底数幂的底数和指数发生的变化,并运用自己的语言进行描述。 单项式的除法法则的推导,应按从具体到一般的步骤进行。探究活动的安排,是使学生通过对具体的特例的计算,归纳出单项式的除法运算性质,并能运用乘除互逆的关系加以说明,也可类比分数的约分进行。在这些活动过程中,学生的化归、符号演算等代数推理能力和有条理的'表达能力得到进一步发展。重视算理算法的渗透是新课标所强调的。 (三)归纳法则 单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。 注:通过总结法则,培养学生的概括能力,养成用数学语言表达自己想法的数学学习习惯。 (四)应用新知 例2计算: (1)28x4y2÷7x3y; (2)—5a5b3c÷15a4b。 首先指明28x4y2与7x3y分别是被除式与除式,在这儿省去了括号。对本例可以采用学生口述,教师板书的形式完成。口述和板书都应注意展示法则的应用,计算过程要详尽,使学生尽快熟悉法则。 注:单项式除以单项式,既要对系数进行运算,又要对相同字母进行指数运算,同时对只在一个单项式里含有的幂要加以注意,这些对刚刚接触整式除法的学生来讲,难免会出现照看不全的情况,所以更应督促学生细心解答问题。 巩固新知教科书第162页练习1及练习2。 学生自己尝试完成计算题,同桌交流。 注:在独立解题和同伴的相互交流过程中让学生自己去体会法则、掌握法则,印象更为深刻,也有助于培养学生良好的思维习惯和主动参与学习的习惯。 (五)作业 1、必做题:教科书第164页习题15。3第1题;第2题。 2、选做题:教科书第164页习题15。3第8题 一、教学目标 1.使学生理解并掌握分式的概念,了解有理式的概念; 2.使学生能够求出分式有意义的条件; 3.通过类比分数研究分式的教学,培养学生运用类比转化的思想方法解决问题的能力; 4.通过类比方法的教学,培养学生对事物之间是普遍联系又是变化发展的辨证观点的再认识. 二、重点、难点、疑点及解决办法 1.教学重点和难点 明确分式的分母不为零. 2.疑点及解决办法 通过类比分数的意义,加强对分式意义的理解. 三、教学过程 【新课引入】 前面所研究的因式分解问题是把整式分解成若干个因式的积的问题,但若有如下问题:某同学分钟做了60个仰卧起坐,每分钟做多少个?可表示为,问,这是不是整式?请一位同学给它试命名,并说一说怎样想到的?(学生有过分数的经验,可猜想到分式) 【新课】 1.分式的定义 (1)由学生分组讨论分式的定义,对于“两个整式相除叫做分式”等错误,由学生举反例一一加以纠正,得到结论: 用、表示两个整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的分母. (2)由学生举几个分式的例子. (3)学生小结分式的概念中应注意的问题. ①分母中含有字母. ②如同分数一样,分式的分母不能为零. (4)问:何时分式的值为零?[以(2)中学生举出的分式为例进行讨论] 2.有理式的分类 请学生类比有理数的'分类为有理式分类: 例1 当取何值时,下列分式有意义? (1); 解:由分母得. ∴当时,原分式有意义. (2); 解:由分母得. ∴当时,原分式有意义. (3); 解:∵恒成立, ∴取一切实数时,原分式都有意义. (4). 解:由分母得. ∴当且时,原分式有意义. 思考:若把题目要求改为:“当取何值时下列分式无意义?”该怎样做? 例2 当取何值时,下列分式的值为零? (1); 解:由分子得. 而当时,分母. ∴当时,原分式值为零. 小结:若使分式的值为零,需满足两个条件:①分子值等于零;②分母值不等于零. (2); 解:由分子得. 而当时,分母,分式无意义. 当时,分母. ∴当时,原分式值为零. (3); 解:由分子得. 而当时,分母. 当时,分母. ∴当或时,原分式值都为零. (4). 解:由分子得. 而当时,,分式无意义. ∴没有使原分式的值为零的的值,即原分式值不可能为零. (四)总结、扩展 1.分式与分数的区别. 2.分式何时有意义? 3.分式何时值为零? (五)随堂练习 1.填空题: (1)当时,分式的值为零 (2)当时,分式的值为零 (3)当时,分式的值为零 2.教材P55中1、2、3. 八、布置作业 教材P56中A组3、4;B组(1)、(2)、(3). 九、板书设计 课题 例1 1.定义例2 2.有理式分类 一、教学目标 1、认识中位数和众数,并会求出一组数据中的众数和中位数。 2、理解中位数和众数的意义和作用。它们也是数据代表,可以反映一定的数据信息,帮助人们在实际问题中分析并做出决策。 3、会利用中位数、众数分析数据信息做出决策。 二、重点、难点和难点的突破方法: 1、重点:认识中位数、众数这两种数据代表 2、难点:利用中位数、众数分析数据信息做出决策。 3、难点的突破方法: 首先应交待清楚中位数和众数意义和作用: 中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能出现在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势。众数是当一组数据中某一重复出现次数较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少不受极端值的影响。 教学过程中注重双基,一定要使学生能够很好的掌握中位数和众数的求法,求中位数的步骤:⑴将数据由小到大(或由大到小)排列,⑵数清数据个数是奇数还是偶数,如果数据个数为奇数则取中间的数,如果数据个数为偶数,则取中间位置两数的平均值作为中位数。求众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据。 在利用中位数、众数分析实际问题时,应根据具体情况,课堂上教师应多举实例,使同学在分析不同实例中有所体会。 三、例习题的意图分析 1、教材P143的例4的意图 (1)、这个问题的研究对象是一个样本,主要是反映了统计学中常用到一种解决问题的'方法:对于数据较多的研究对象,我们可以考察总体中的一个样本,然后由样本的研究结论去估计总体的情况。 (2)、这个例题另一个意图是交待了当数据个数为偶数时,中位数的求法和解题步骤。(因为在前面有介绍中位数求法,这里不再重述) (3)、问题2显然反映学习中位数的意义:它可以估计一个数据占总体的相对位置,说明中位数是统计学中的一个重要的数据代表。 (4)、这个例题再一次体现了统计学知识与实际生活是紧密联系的,所以应鼓励学生学好这部分知识。 2、教材P145例5的意图 (1)、通过例5应使学生明白通常对待销售问题我们要研究的是众数,它代表该型号的产品销售,以便给商家合理的建议。 (2)、例5也交待了众数的求法和解题步骤(由于求法在前面已介绍,这里不再重述) (3)、例5也反映了众数是数据代表的一种。 四、课堂引入 严格的讲教材本节课没有引入的问题,而是在复习和延伸中位数的定义过程中拉开序幕的,本人很同意这种处理方式,教师可以一句话引入新课:前面已经和同学们研究过了平均数的这个数据代表。它在分析数据过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据过程中又起到怎样的作用。 五、例习题的分析 教材P144例4,从所给的数据可以看到并没有按照从小到大(或从大到小)的顺序排列。因此,首先应将数据重新排列,通过观察会发现共有12个数据,偶数个可以取中间的两个数据146、148,求其平均值,便可得这组数据的中位数。 教材P145例5,由表中第二行可以查到23.5号鞋的频数,因此这组数据的众数可以得到,所提的建议应围绕利于商家获得较大利润提出。 六、随堂练习 1某公司销售部有营销人员15人,销售部为了制定某种商品的销售金额,统计了这15个人的销售量如下(单位:件) 1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150 求这15个销售员该月销量的中位数和众数。 假设销售部负责人把每位营销员的月销售定额定为320件,你认为合理吗?如果不合理,请你制定一个合理的销售定额并说明理由。 2、某商店3、4月份出售某一品牌各种规格的空调,销售台数如表所示: 1匹1.2匹1.5匹2匹 3月12台20台8台4台 4月16台30台14台8台 根据表格回答问题: 商店出售的各种规格空调中,众数是多少? 假如你是经理,现要进货,6月份在有限的资金下进货单位将如何决定? 答案:1. (1)210件、210件(2)不合理。因为15人中有13人的销售额达不到320件(320虽是原始数据的平均数,却不能反映营销人员的一般水平),销售额定为210件合适,因为它既是中位数又是众数,是大部分人能达到的额定。 2. (1)1.2匹(2)通过观察可知1.2匹的销售,所以要多进1.2匹,由于资金有限就要少进2匹空调。 七、课后练习 1.数据8、9、9、8、10、8、99、8、10、7、9、9、8的中位数是,众数是 2.一组数据23、27、20、18、X、12,它的中位数是21,则X的值是. 3.数据92、96、98、100、X的众数是96,则其中位数和平均数分别是( ) A.97、96 B.96、96.4 C.96、97 D.98、97 4.如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是( ) A.24、25 B.23、24 C.25、25 D.23、25 5.随机抽取我市一年(按365天计)中的30天平均气温状况如下表: 温度(℃) -8 -1 7 15 21 24 30 天数3 5 5 7 6 2 2 请你根据上述数据回答问题: (1).该组数据的中位数是什么? (2).若当气温在18℃~25℃为市民“满意温度”,则我市一年中达到市民“满意温度”的大约有多少天? 答案:1. 9;2. 22; 3.B;4.C; 5.(1)15. (2)约97天 一、学情分析 本学期本人继续担任八年级(2)班的数学教学工作,八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。从上期期末考试的成绩来看1班、2班的成绩差异很大,2班有少数学生不上进,思维不紧跟老师,有部分同学基础较差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。 二、教材分析 本学期教学内容共计五章,知识的前后联系,教材的教学目标,重、难点分析如下: 第十七章分式 本章的主要内容包括:分式的概念,分式的基本性质,分式的约分与通分,分式的加、减、乘、除运算,整数指数幂的概念及运算性质,分式方程的概念及可化为一元一次方程的分式方程的解法。 第十八章函数及其图像 函数是研究现实世界变化规律的一个重要模型,本单元学生在学习了一次函数后,进一步研究反比例函数。学生在本章中经历:反比例函数概念的抽象概括过程,体会建立数学模型的.思想,进一步发展学生的抽象思维能力;经历反比例函数的图象及其性质的探索过程,在交流中发展能力这是本章的重点之一;经历本章的重点之二:利用反比例函数及图象解决实际问题的过程,发展学生的数学应用能力;经历函数图象信息的识别应用过程,发展学生形象思维;能根据所给信息确定反比例函数表达式,会作反比例函数图象,并利用它们解决简单的实际问题。本章的难点在于对学生抽象思维的培养,以及提高数形结合的意识和能力。 第十九章全等三角形 本章主要内容是探索三角形全等的判定方法,领略推理证明的奥秘,由于三角形全等的判定方法与全等三角形的性质具有“互逆”的特点,所以本章因势利导,介绍了命题与定理、逆命题与逆命题的有关知识。此外,本章教材最后还介绍了几种常用的基本作图和简单的尺规作图的方法。 第二十章平行四边形的判定 本章的内容包括平行四边形的判定;矩形、菱形、正方形等几种特殊平行四边形的判定;等腰梯形的判定等几个部分。本章首先通过回顾平行四边形的性质,由性质引出判定方法,在此基础上,学习矩形、菱形、正方形等特殊平行四边形的判定,最后介绍了等腰梯形的判定与应用。本章知识是在学习了平行线、三角形、平行四边形的性质等知识的基础上的进一步深化和提高,是今后学习其他几何知识的基础。 第二十一章数据的整理与初步处理 本章主要研究平均数、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。 三、提高学科教育质量的主要措施: 1、认真做好教学六认真工作。把教学六认真作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。 2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。 3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的构造。 4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。 5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。 6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。 7、指导成立“课外兴趣小组”的民间组织,开展丰富多彩的课外活动,开展对奥数题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长。 8、开展分层教学,布置作业设置A、B、C三类分层布置分别适合于差、中、好三类学生,课堂上的提问照顾好好、中、差三类学生,使他们都等到发展。 9、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。 10、培养学生学习数学的良好习惯。这些习惯包括: ①认真做作业的习?包括作业前清理好桌面,作业后认真检查; ②预习的习惯; ③认真看批改后的作业并及时更正的习惯; ④认真做好课前准备的习惯; ⑤在书上作精要笔记的习惯; ⑥妥善保管书籍资料和学习用品的习惯; ⑦认真阅读数学教材的习惯。 教学目标: 1、知识目标:探索图形之间的变换关系(轴对称、平移、旋转及其组合)。 2、能力目标: ①经历对具有旋转特征的图形进行观察、分析、动手操作和画图等过程,掌握画图技能。 ②能够按要求作出简单平面图形旋转后的图形,并在此基础上达到巩固旋转的有关性质。 3、情感体验点:培养学生的观察能力和审美能力,激发学生学习数学的兴趣。 重点与难点: 重点:图形之间的变换关系(轴对称、平移、旋转及其组合); 难点:综合利用各种变换关系观察图形的形成。 疑点:基本图案不同,形成方式不同。 教学方法: 新授课在教师引导下,以学生的分组讨论、合作交流为主展开教学。 教学过程设计: 1、情境导入 播放自制图形形成的影片,如图351。 2、充分利用本课时引入开放性的问题:图351由四部分组成,每部分都包括两个小十字,其中一部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其它方式吗? 问题本身为学生创设了一个探究图形之间变化关系的情景,图形虽十简单,但变换方式综合性强,可以让学生自由发挥,各抒已见,后由教师进行适当归纳小结: (1)整个图形可以看做是由一个十字组成部分通过连续七次平移前后的图形共同组成; (2)整个图形也可以看做是由左边的两个十字组成的部分通过三次放置形成的; (3)整个图形不定期可以看做把左边的两个十字组成的部分先通过平移一次形成左右四个十字组成的图形,然后绕图形中心旋转90度前后的图形共同组成; (4)整个图形还可以看做把左边的两个十字组成的部分通过二次轴对称形成的。 (学生可能还有其他不同描述,教师应予以肯定) 3、通过上述问题的讨论,我们看到图形的平移、旋转,轴对称变换是图形变换中最基本的三种变换方式,它们是今后设计图案的主要手段。 4、利用想一想你能将图352的左图,通过平移或旋转得到右图吗? 学生议论或动手操作会发现这是不可能的,教材意图十分明确,要告诉学生并不是所有图形都可以通过一次平移或旋转而得到的,从而要求我们今后分析图形之间的关系时,要充分利用它们各自的性质、特征正确判断和识别。那么上述图形能通过轴对称变换从左图变成右图吗?进一步让学生思考,从而得到结论是可能的。 5、例1、怎样将图353中的甲图变成乙图案? 通过相对简单活泼的问题,让学生能运用图形变换的几种不同方式解答问题(先旋转再平移后等到或先平移后旋转也可以) 例2、怎样将图354中右边的图案变成左边的图案? 留给学生充足的时间讨论交流。 (师):哪位同学有好好方法,请告诉大家! (生):以右图案的中心为旋转中心,将图案按逆时针方向旋转900 。 (生):以右图案的中心为旋转中心,将图案顺逆时针方向旋转2700 。 明确可以通过不同的办法达到同样的效果,激励学生动手动脑。 5、学习小结 (1)内容总结 两个图案前后变化彩用了哪些方法?(平移、旋转,轴对称) (2)方法归纳 ①了解并知道图案变化的`一般方法。 ②图案变化的方法很多,在生活中要养成多途径观察,思考问题的习惯。 6、目标检测 图355是由三个正三角形拼成的,它可以看做由其中一个三角形经过怎样的变换而得到? 延伸拓展: 1、链接生活 链接一:奥运会的五环旗图案是大家熟悉的图案,请你根据所学知识分析它的形成。(用课本知识解释生活中的图形变换) 链接二:夏季是荷花盛开的季节,同学们都赞美过它出淤泥而不染的品质,很多同学曾画过荷花,请你用所学知识再画一朵荷花,看与以前有什么不同的感受(让学生进一步体会数学与生活的密切联系) 实践探索: ①实践活动列举实例归纳图形之间的变换关系(平移、旋转,轴对称及其组合) ②巩固练习课本74页中的习题3.6。 板书设计: 3.5它们是怎样变过来的。 轴对称、平移、旋转的性质例题; 图形之间的变换关系; 一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。 1.平移 2.平移的性质: ⑴经过平移,对应点所连的线段平行且相等; ⑵对应线段平行且相等,对应角相等。 ⑶平移不改变图形的大小和形状(只改变图形的位置)。 (4)平移后的图形与原图形全等。 3.简单的平移作图 ①确定个图形平移后的位置的条件: ⑴需要原图形的位置; ⑵需要平移的方向; ⑶需要平移的`距离或一个对应点的位置。 ②作平移后的图形的方法: ⑴找出关键点;⑵作出这些点平移后的对应点; ⑶将所作的对应点按原来方式顺次连接,所得的; 二、旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角。 1.旋转 2.旋转的性质 ⑴旋转变化前后,对应线段,对应角分别相等,图形的大小,形状都不改变(只改变图形的位置)。 ⑵旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相同的角度。 ⑶任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。 ⑷旋转前后的两个图形全等。 3.简单的旋转作图 ⑴已知原图,旋转中心和一对对应点,求作旋转后的图形。 ⑵已知原图,旋转中心和一对对应线段,求作旋转后的图形。 ⑶已知原图,旋转中心和旋转角,求作旋转后的图形。 三、分析组合图案的形成 ①确定组合图案中的“基本图案” ②发现该图案各组成部分之间的内在联系 ③探索该图案的形成过程,类型有:⑴平移变换;⑵旋转变换;⑶轴对称变换;⑷旋转变换与平移变换的组合; ⑸旋转变换与轴对称变换的组合;⑹轴对称变换与平移变换的组合。 一、课堂导入 回顾平行四边的性质定理及定义 1.什么叫平行四边形?平行四边形有什么性质? 2.将以上的性质定理,分别用命题形式叙述出来。(如果……那么……) 根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形性质定理的逆命题是否成立? 二、新课讲解 平行四边形的.判定: (定义法):两组对边分别平行的四边形的平边形。 几何语言表达定义法: ∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形 解析:一个四边形只要其两组对边分别互相平行,则可判定这个四边形是一个平行四边形。 活动:用做好的纸条拼成一个四边形,其中强调两组对边分别相等。 (平行四边形判定定理): (一)两组对边分别相等的四边形是平行四边形。 设问:这个命题的前提和结论是什么? 已知:四边形ABCD中,AB=CD,BC=DA。 求证:四边ABCD是平行四边形。 分析:判定平行四边形的依据目前只有定义,也就是须证明两组对边分别平行,当然是借助第三条直线证明角等。连结BD。易证三角形全等。 板书证明过程。 小结:用几何语言表达用定义法和刚才证明为正确的方法证明一个四边形是平行四边形的方法为: 平行四边形判定定理1:二组对边分别相等的四边形是平行四边形∵AB=CD,AD=BC,∴四边形ABCD是平行四边形 (二)设问:若一个四边形有一组对边平行且相等,能否判定这个四边形也是平行四边形呢? 活动:课本探究内容,并用事准备好的纸条(纸条的长度相等),先将纸条放置不平行位置,让学生设想若二纸条的端点为四边形的顶点,则组成的四边形是不是平行四边形?若将纸条摆放为平行的位置,则同样用二纸条的端点为顶点组成的四边形是不是平行四边形? 设问:我们能否用推理的方法证明这个命题是正确的呢?(让学生找出题设、结论,然后写出已知、求证及证明过程。) 一、学习目标: 让学生了解多项式公因式的意义,初步会用提公因式法分解因式 二、重点难点 重点:能观察出多项式的公因式,并根据分配律把公因式提出来 难点:让学生识别多项式的公因式. 三、合作学习: 公因式与提公因式法分解因式的概念. 三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c) 既ma+mb+mc = m(a+b+c) 由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法。 四、精讲精练 例1、将下列各式分解因式: (1)3x+6; (2)7x2-21x; (3)8a3b2-12ab3c+abc (4)-24x3-12x2+28x. 例2把下列各式分解因式: (1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2. (3) a(x-3)+2b(x-3) 通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤. 首先找各项系数的____________________,如8和12的公约数是4. 其次找各项中含有的`相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最___________的 课堂练习 1.写出下列多项式各项的公因式. (1)ma+mb 2)4kx-8ky (3)5y3+20y2 (4)a2b-2ab2+ab 2.把下列各式分解因式 (1)8x-72 (2)a2b-5ab (3)4m3-6m2 (4)a2b-5ab+9b (5)(p-q)2+(q-p)3 (6)3m(x-y)-2(y-x)2 五、小结: 总结出找公因式的一般步骤.: 首先找各项系数的大公约数, 其次找各项中含有的相同的字母,相同字母的指数取次数最小的 注意:(a-b)2=(b-a)2 六、作业 1、教科书习题 2、已知2x-y=1/3,xy=2,求2x4y3-x3y4 3、(-2)20xx+(-2)20xx 4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3 分式方程 教学目标 1.经历分式方程的概念,能将实际问题中的等量关系用分式方程 表示,体会分式方程的模型作用. 2.经历实际问题-分式方程方程模型的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生的应用意识。 3.在活动中培养学生乐于探究、合作学习的习惯,培养学 生努力寻找 解决问题的进取心,体会数学的应用价值. 教学重点: 将实际问题中的等量 关系用分式方程表示 教学难点: 找实际问题中的等量关系 教学过程: 情境导入: 有两块面积相同的小麦试验田,第一块使用原品种,第二 块使用新品种,分别收获小麦9000 kg和15000 kg。已知第一块试验田每公顷的产量比第二块少3000 kg,分别求这两块试验田每 公顷 的产量。你能找出这一问题中的所有等量关系吗?(分组交流) 如果设第一块试验田 每公顷的`产量为 kg,那么第二块试验田每公顷的产量是________kg。 根据题意,可得方程___________________ 二、讲授新课 从甲地到乙地有两条公路:一条是全长600 km的普通 公路,另一条是全长480 km的高速公路。某客 车在 高速公路上行驶的平均速度比在普通公路上快45 km/h,由高速 公路从甲地到乙地所需的时间 是由普通公路从甲地到乙地所需时间的一半。求该客车由高速公路从 甲地到乙地所需的时间。 这 一问题中有哪些等量关系? 如果设客车由高速公路从甲地到乙地 所需的时间为 h,那么它由普通公路从甲地到乙地所需的时间为_________h。 根据题意,可得方程_ _____________________。 学生分组探讨、交流,列出方程. 三.做一做: 为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。如果设第一次捐款人数为 人,那么 满足怎样的方程? 四.议一议: 上面所得到的方程有什么共同特点? 分母中含有未知数的方程叫做分式方程 分式方程与整式方程有什么区别? 五、 随堂练习 (1)据联合国《20xx年全球投资 报告》指出,中国20xx年吸收外国投资额 达530亿美元,比上一年增加了13%。设20xx年我国吸收外国投资额为 亿美元,请你写出 满足的方程。你能写出几个方程?其中哪一个是分式方程? (2)轮船在顺水中航行20千米与逆水航行10千米所用时间相同,水流速度为2. 5千米/小时,求轮船的静水速度 (3)根据分式方程 编一道应用题,然后同组交流,看谁编得好 六、学 习小结 本节课你学到了哪些知识?有什么感想? 七.作业布置 一、学习目标 1.使学生了解运用公式法分解因式的意义; 2.使学生掌握用平方差公式分解因式 二、重点难点 重点:掌握运用平方差公式分解因式。 难点:将单项式化为平方形式,再用平方差公式分解因式。 学习方法:归纳、概括、总结。 三、合作学习 创设问题情境,引入新课 在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的.形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式。 如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法。 1.请看乘法公式 左边是整式乘法,右边是一个多项式,把这个等式反过来就是左边是一个多项式,右边是整式的乘积。大家判断一下,第二个式子从左边到右边是否是因式分解? 利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式。 a2—b2=(a+b)(a—b) 2.公式讲解 如x2—16 =(x)2—42 =(x+4)(x—4)。 9m2—4n2 =(3m)2—(2n)2 =(3m+2n)(3m—2n)。 四、精讲精练 例1、把下列各式分解因式: (1)25—16x2;(2)9a2—b2。 例2、把下列各式分解因式: (1)9(m+n)2—(m—n)2;(2)2x3—8x。 补充例题:判断下列分解因式是否正确。 (1)(a+b)2—c2=a2+2ab+b2—c2。 (2)a4—1=(a2)2—1=(a2+1)?(a2—1)。 五、课堂练习 教科书练习。 六、作业 1、教科书习题。 2、分解因式:x4—16x3—4x4x2—(y—z)2。 3、若x2—y2=30,x—y=—5求x+y。 知识结构: 重点与难点分析: 本节内容的重点是等腰三角形的判定定理.本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点.推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关系经常用到此推论. 本节内容的难点是性质与判定的区别。等腰三角形的性质定理和判定定理是互逆定理,题设与结论正好相反.学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节的难点.另外本节的文字叙述题也是难点之一,和上节结合让学生逐步掌握解题的思路方法.由于知识点的增加,题目的复杂程度也提高,一定要学生真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用. 教法建议: 本节课教学方法主要是“以学生为主体的讨论探索法”。在数学教学中要避免过多告诉学生现成结论。提倡教师鼓励学生讨论解决问题的方法,引导他们探索数学的内在规律。具体说明如下: (1)参与探索发现,领略知识形成过程 学生学习过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言.最后找一名学生用文字口述定理的内容。这样很自然就得到了等腰三角形的判定定理.这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。 (2)采用“类比”的学习方法,获取知识。 由性质定理的学习,我们得到了几个推论,自然想到:根据等腰三角形的判定定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论板书出来。如果学生提到的不完整,教师可以做适当的点拨引导。 (3)总结,形成知识结构 为了使学生对本节课有一个完整的认识,便于今后的应用,教师提出如下问题,让学生思考回答:(1)怎样判定一个三角形是等腰三角形?有哪些定理依据?(2)怎样判定一个三角形是等边三角形? 一.教学目标: 1.使学生掌握等腰三角形的判定定理及其推论; 2.掌握等腰三角形判定定理的运用; 3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的'能力; 4.通过自主学习的发展体验获取数学知识的感受; 5.通过知识的纵横迁移感受数学的辩证特征. 二.教学重点:等腰三角形的判定定理 三.教学难点:性质与判定的区别 四.教学用具:直尺,微机 五.教学方法:以学生为主体的讨论探索法 六.教学过程: 1、新课背景知识复习 (1)请同学们说出互逆命题和互逆定理的概念 估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。 (2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题? 启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述: 1.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等. (简称“等角对等边”). 由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法. 已知:如图,△ABC中,∠B=∠C. 求证:AB=AC. 教师可引导学生分析: 联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC. 注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆. (2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形. (3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系. 2.推论1:三个角都相等的三角形是等边三角形. 推论2:有一个角等于60°的等腰三角形是等边三角形. 要让学生自己推证这两条推论. 小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理. 证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2. 3.应用举例 例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形. 分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和.要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠1、∠2的关系. 已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC. 求证:AB=AC. 证明:(略)由学生板演即可. 补充例题:(投影展示) 1.已知:如图,AB=AD,∠B=∠D. 求证:CB=CD. 分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD. 证明:连结BD,在 中, (已知) (等边对等角) (已知) 即 (等教对等边) 小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系. 2.已知,在 中, 的平分线与 的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF. 分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论. 证明: DE//BC(已知) , BE=DE,同理DF=CF. EF=DE-DF EF=BE-CF 小结: (1)等腰三角形判定定理及推论. (2)等腰三角形和等边三角形的证法. 七.练习 教材 P.75中1、2、3. 八.作业 教材 P.83 中 1.1)、2)、3);2、3、4、5. 九.板书设计 【教学目标】 知识与技能 能确定多项式各项的公因式,会用提公因式法把多项式分解因式. 过程与方法 使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解. 情感、态度与价值观 培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值. 【教学重难点】 重点:掌握用提公因式法把多项式分解因式. 难点:正确地确定多项式的最大公因式. 关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的`指数取最低次幂. 【教学过程】 一、回顾交流,导入新知 【复习交流】 下列从左到右的变形是否是因式分解,为什么? (1)2x2+4=2(x2+2); (2)2t2-3t+1=(2t3-3t2+t); (3)x2+4xy-y2=x(x+4y)-y2; (4)m(x+y)=mx+my; (5)x2-2xy+y2=(x-y)2. 问题: 1.多项式mn+mb中各项含有相同因式吗? 2.多项式4x2-x和xy2-yz-y呢? 请将上述多项式分别写成两个因式的乘积的形式,并说明理由. 【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y. 概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法. 二、小组合作,探究方法 教师提问:多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么? 【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂. 三、范例学习,应用所学 例1:把-4x2yz-12xy2z+4xyz分解因式. 解:-4x2yz-12xy2z+4xyz =-(4x2yz+12xy2z-4xyz) =-4xyz(x+3y-1) 例2:分解因式:3a2(x-y)3-4b2(y-x)2 【分析】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法. 解法1:3a2(x-y)3-4b2(y-x)2 =-3a2(y-x)3-4b2(y-x)2 =-[(y-x)2·3a2(y-x)+4b2(y-x)2] =-(y-x)2[3a2(y-x)+4b2] =-(y-x)2(3a2y-3a2x+4b2) 解法2:3a2(x-y)3-4b2(y-x)2 =(x-y)2·3a2(x-y)-4b2(x-y)2 =(x-y)2[3a2(x-y)-4b2] =(x-y)2(3a2x-3a2y-4b2) 例3:用简便的方法计算: 0.84×12+12×0.6-0.44×12. 【教师活动】引导学生观察并分析怎样计算更为简便. 解:0.84×12+12×0.6-0.44×12 =12×(0.84+0.6-0.44) =12×1=12. 【教师活动】在学生完成例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同? 四、随堂练习,巩固深化 课本115页练习第1、2、3题. 【探研时空】 利用提公因式法计算: 0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69 五、课堂总结,发展潜能 1.利用提公因式法因式分解,关键是找准最大公因式.在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂. 2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止. 六、布置作业,专题突破 课本119页习题14.3第1、4(1)、6题. 【八年级数学教案】相关文章: 有关八年级数学教案八年级数学教案全套10-03 八年级数学教案12-04 【推荐】八年级数学教案01-31 【热门】八年级数学教案01-31 【荐】八年级数学教案01-17 八年级数学教案【热门】01-18 【热】八年级数学教案01-18 八年级数学教案【荐】02-01 八年级数学教案【精】02-01 八年级数学教案【热】01-20八年级数学教案2
八年级数学教案3
八年级数学教案4
八年级数学教案5
八年级数学教案6
八年级数学教案7
八年级数学教案8
八年级数学教案9
八年级数学教案10
八年级数学教案11
八年级数学教案12
八年级数学教案13
八年级数学教案14
八年级数学教案15