余角和补角教案

时间:2023-12-18 14:30:27 泽彪 教案 我要投稿
  • 相关推荐

余角和补角教案

  作为一位不辞辛劳的人民教师,常常要根据教学需要编写教案,教案是教学活动的依据,有着重要的地位。写教案需要注意哪些格式呢?下面是小编为大家收集的余角和补角教案,仅供参考,大家一起来看看吧。

余角和补角教案

  余角和补角教案 1

  教学目标:

  知识与能力

  能正确运用角度表示方向,并能熟练运算和角有关的问题。

  过程与方法

  能通过实际操作,体会方位角在是实际生活中的应用,发展抽象思维。

  情感、态度、价值观

  能积极参与数学学习活动,培养学生对数学的好奇心和求知欲。

  教学重点:

  方位角的表示方法。

  教学难点:

  方位角的准确表示。

  教学准备:

  预习书上有关内容

  预习导学:

  如图所示,请说出四条射线所表示的方位角?

  教学过程;

  一、创设情景,谈话导入

  在现实生活中,有一种角经常用于航空、航海,测绘中领航员常用地图和罗盘进行这种角的测定,这就是方位角,方位角应用比较广泛,什么是方位角呢?

  二、精讲点拔,质疑问难

  方位角其实就是表示方向的角,这种角以正北,正南方向为基准描述物体的方向,如“北偏东30°”,“南偏西40°”等,方位角不能以正东,正西为基准,如不能说成“东偏北60°,西偏南50°”等,但有时如北偏东45°时,我们可以说成东北方向。

  三、课堂活动,强化训练

  例1如图:指出图中射线OA、OB所表示的方向。

  (学生个别回答,学生点评)

  例2若灯塔位于船的北偏东30°,那么船在灯塔的什么方位?

  (小组讨论,个别回答,教师)

  例3如图,货轮O在航行过程中发现灯塔A在它的南偏东60°的方向上,同时在它北偏东60°,南偏西10°,西北方向上又分别发现了客轮B,货轮C和海岛D,仿照表示灯塔方位的方法,画出表示客轮B、货轮C、海岛D方向的射线。

  (教师分析,一学生上黑板,学生点评)

  四、延伸拓展,巩固内化

  例4某哨兵上午8时测得一艘船的位置在哨所的南偏西30°,距哨所10km的`地方,上午10时,测得该船在哨所的北偏东60°,距哨所8km的地方。

  (1)请按比例尺1:000画出图形。

  (独立完成,一同学上黑板,学生点评)

  (2)通过测量计算,确定船航行的方向和进度。

  (小组讨论,得出结论,代表发言)

  五、布置作业、当堂反馈

  练习:请使用量角器、刻度尺画出下列点的位置。

  (1)点A在点O的北偏东30°的方向上,离点O的距离为3cm。

  (2)点B在点O的南偏西60°的方向上,离点O的距离为4cm。

  (3)点C在点O的西北方向上,同时在点B的正北方向上。

  作业:书P1407、9

  余角和补角教案 2

  一、教学目标:

  ⑴ 在具体情景中了解余角与补角,懂得余角和补角的性质,通过练习掌握余角和补角的概念及性质,并能运用它们解决一些简单的实际问题。

  ⑵ 经历观察、操作、推理、交流等活动,发展学生的几何概念,培养学生的推理能力和表达能力。

  ⑶ 体验数学知识的发生、发展过程,敢于面对数学活动中的困难,建立学好数学的自信心。

  二、教学重点、难点:

  余角与补角的性质

  三、教学过程:

  复习、引入

  ⑴ 复习角的定义。你知道有哪些特殊的角?

  ⑵ 用量角器量一量图中每组两个角的度数,并求出它们的`和。

  你有什么发现?

  新课:

  由学生的发现,给出余角和补角的定义(文字叙述)。

  并且用数学符号语言进行理解。

  问题1:如何求一个角的余角和补角。

  ① ∠1的余角:90°-∠1

  ② ∠α的补角:180°-∠α

  练习:填表(求一个角的余角、补角)

  拓广:观察表格,你发现α的余角和α的补角有什么关系?

  如何进行理论推导?

  结论:α的补角比α的余角大90°

  α一定是锐角

  钝角没有余角,但一定有补角。

  问题2:①如果∠1与∠2互余,∠3与∠4互余,并且∠1=∠3,那么∠2和∠4什么关系?为什么?

  (学生讨论,请一人回答)

  ②如果∠1与∠2互补,∠3与∠4互补,并且∠1=∠3,

  那么∠2和∠4什么关系?为什么?

  结论:性质:①等角的余角相等。

  ②等角的补角相等。

  练习:看图找互余的角和互补的角,以及相等的角。

  结论:直角的补角是直角。凡是直角都相等。

  解决实际问题:

  在长方形的台球桌面上,选择适当的角度击打白球,可以使白球经过两次反弹后将黑球直接撞入袋中。此时∠1=∠2,∠3=∠4,并且∠2+∠3=90°,∠4+∠5=90°。如果黑球与洞口的连线和台球桌面边缘的夹角∠5=40°,那么∠1应等于多少度才能保证黑球准确入袋?请说明理由。

  (学生小组讨论,应用所学知识解决此问题)

  小结:

  ⑴ 这节课,使我感受最深的是……

  ⑵ 这节课,我感到最困难的是……

  ⑶ 这节课,我学会了……

  ⑷ 这节课,我发现生活中……

  ⑸ 这节课,我想我将……

  (学生思考作答)

  作业:目标检测P64,

  书P139-6(写书上),

  书P147-9,10(写本上)

  余角和补角教案 3

  一、课题:

  3.4.2余角和补角

  二、学习目标:

  ㈠知识与技能:

  1.在具体情境中了解余角和补角,懂得等角或同角的补角相等、等角或同角的余角相等;

  2.并能运用这些性质解决一些简单的实际问题。

  ㈡过程与方法:

  经历观察、推理、交流等活动,发展学生的图形观念,培养学生的推理能力和有条理的表达能力。

  ㈢情感态度与价值观:

  1.体验数学知识来源于生活,又能运用于生活,解决生活中的一些实际问题;

  2.使学生体会几何图形的动态美,通过性质的推导,使学生初步领略几何逻辑推理的严密美.

  三、教学重难点:

  重点:互为余角、互为补角的概念及有关余角、补角的性质;

  难点:有关余角和有关补角性质的推导和运用。

  四、教学方法:

  演示法、观察法、小组合作与交流讨论法。

  五、课时与课型:

  课时:第一课时;课型:新授课。

  六、教学准备:

  两副三角板、投影片若干张。

  七、教学设计:

  ㈠提出问题----从生活走向数学

  ㈡引入新课

  要想正确解决这个问题,需要学习本节课的'知识。

  (板书课题)3.4.2余角和补角

  ㈢探究新知

  1.互为余角、互为补角的定义

  ⑴教师用三角板演示两个角的和是90°及两个角的和是180°的情况;

  ⑵请你自己画出两个角的和是90°及两个角的和是180°的图形。

  2.提出问题,理解定义.(投影显示)

  (1)以上定义中的“互为”是什么意思?

  (2)若,那么互为补角吗?

  (3)互为余角、互为补角的两个角是否一定有公共顶点?

【余角和补角教案】相关文章:

比和比例的教案02-10

小兔和狼的教案01-21

雷达和蝙蝠教案01-21

点和线教案01-18

树林和草原教案02-17

酸的和甜教案02-17

《小草和大树》教案10-13

《鲜花和星星》教案02-24

花菜和卷心菜教案03-04