- 初中数学圆教案 推荐度:
- 相关推荐
初中数学《圆》教案(通用10篇)
作为一名教师,通常会被要求编写教案,教案是实施教学的主要依据,有着至关重要的作用。教案应该怎么写才好呢?下面是小编帮大家整理的初中数学《圆》教案,希望对大家有所帮助。
初中数学《圆》教案 1
教学目标 :
(1)使学生理解正多边形概念,初步掌握正多边形与圆的关系的第一个定理;
(2)通过正多边形定义教学,培养学生归纳能力;通过正多边形与圆关系定理的教学培养学生观察、猜想、推理、迁移能力;
(3)进一步向学生渗透“特殊——一般”再“一般——特殊”的唯物辩证法思想。
教学重点 :
正多边形的概念与正多边形和圆的关系的第一个定理
教学难点 :
对定理的理解以及定理的证明方法
教学活动设计:
(一)观察、分析、归纳:
观察、分析:
1.等边三角形的边、角各有什么性质?
2.正方形的边、角各有什么性质?
归纳:等边三角形与正方形的边、角性质的共同点
教师组织学生进行,并可以提问学生问题
(二)正多边形的概念:
(1)概念:各边相等、各角也相等的多边形叫做 正多边形。如果一个正多边形有n(n≥3)条边,就叫正n边形。等边三角形有三条边叫正三角形,正方形有四条边叫正四边形
(2)概念理解:
①请同学们举例,自己在日常生活中见过的正多边形。(正三角形、正方形、正六边形,…….)
②矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?
矩形不是正多边形,因为边不一定相等,菱形不是正多边形,因为角不一定相等。
(三) 分析、发现:
问题:正多边形与圆有什么关系呢?
发现:正三角形与正方形都有内切圆和外接圆,并且为同心圆。
分析:正三角形三个顶点把圆三等分;正方形的四个顶点把圆四等分。要将圆五等分,把等分点顺次连结,可得正五边形。要将圆六等分呢?
(四)多边形和圆的关系的定理
定理:把圆分成n(n ≥3) 等份:
(1) 依次连结各分点所得的多边形是这个圆的内接正n 边形;
(2) 经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n 边形
我们以n=5的情况进行证明
已知:⊙O中, = = = = ,TP、PQ、QR、RS、ST分别是经过点A、B、C、D、E的⊙O的切线
求证:(1)五边形ABCDE是⊙O的内接正五边形;
(2)五边形PQRST是⊙O的外切正五边形
证明:(略)
引导学生分析、归纳证明思路:
弧相等
说明:
(1)要判定一个多边形是不是正多边形,除根据定义来判定外,还可以根据这个定理来判定,即:
①依次连结圆的'n(n≥3)等分点,所得的多边形是正多迫形;
②经过圆的n(n≥3)等分点作圆的切线,相邻切线相交成的多边形是正多边形
(2)要注意定理中的 “依次”、“相邻” 等条件
(3)此定理被称为正多边形的判定定理,我们可以根据它判断一多边形为正多边形或根据它作正多边形
(五)初步应用
P157练习
1、(口答)矩形是正多边形吗?菱形是正多边形吗?为什么?
2、求证:正五边形的对角线相等
(六)小结:
知识:
(1)正多边形的概念
(2)n等分圆周(n≥3)可得圆的内接正n边形和圆的外切正n边形
能力和方法: 正多边形的证明方法和思路,正多边形判断能力
(七)作业 教材P172习题A组2、3
初中数学《圆》教案 2
教学目标:
(1)理解正多边形与圆的关系定理;
(2)理解正多边形的对称性和边数相同的正多边形相似的性质;
(3)理解正多边形的中心、半径、边心距、中心角等概念;
(4)通过正多边形性质的教学培养学生的探索、推理、归纳、迁移等能力;
教学重点:
理解正多边形的中心、半径、边心距、中心角的概念和性质定理
教学难点:
对“正多边形都有一个外接圆和一个内切圆,并且这两个圆是同心圆”的理解。
教学活动设计:
(一)提出问题:
问题:上节课我们学习了正多边形的定义,并且知道只要n等分(n≥3)圆周就可以得到的圆的内接正n边形和圆的外切正n边形 反过来, 是否每一个正多边形都有一个外接圆和内切圆呢?
(二)实践与探究:
组织学生自己完成以下活动
实践:1、作已知三角形的外接圆,圆心是已知三角形的什么线的交点?半径是什么?
2、作已知三角形的内切圆,圆心是已知三角形的什么线的交点?半径是什么?
探究1:当三角形为正三角形时,它的外接圆和内切圆有什么关系?
探究2:(1)正方形有外接圆吗?若有外接圆的圆心在哪?(正方形对角线的交点)
(2)根据正方形的哪个性质证明对角线的交点是它的外接圆圆心?
(3)正方形有内切圆吗?圆心在哪?半径是谁?
(三)拓展、推理、归纳:
(1)拓展、推理:
过正五边形ABCDE的顶点A、B、C、作⊙O连结OA、OB、OC、OD
同理,点E在⊙O上
所以正五边形ABCDE有一个外接圆⊙O
因为正五边形ABCDE的各边是⊙O中相等的弦,所以弦心距相等,因此,以点O为圆心,以弦心距(OH)为半径的圆与正五边形的各边都相切,可见正五边形ABCDE还有一个以O为圆心的内切圆。
(2)归纳:
正五边形的任意三个顶点都不在同一条直线上
它的任意三个顶点确定一个圆,即确定了圆心和半径
其他两个顶点到圆心的距离都等于半径
正五边形的各顶点共圆
正五边形有外接圆
圆心到各边的距离相等
正五边形有内切圆,它的圆心是外接圆的圆心,半径是圆心到任意一边的距离
照此法证明,正六边形、正七边形、…正n边形都有一个外接圆和内切圆
定理: 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
正多边形的外接圆(或内切圆)的圆心叫做 正多边形的中心 ,外接圆的半径叫做 正多边形的半径 ,内切圆的半径叫做 正多边形的边心距,正多边形各边所对的外接圆的圆心角都相等,正多边形每一边所对的外接圆的圆心角叫做 正多边形的中心角,正n边形的每个中心角都等于。
(3)巩固练习:
1、正方形ABCD的外接圆圆心O叫做正方形ABCD的______
2、正方形ABCD的内切圆⊙O的半径OE叫做正方形ABCD的______
3、若正六边形的边长为1,那么正六边形的中心角是______度,半径是______,边心距是______,它的每一个内角是______
4、正n边形的一个外角度数与它的`______角的度数相等
(四)正多边形的性质:
1、各边都相等
2、各角都相等
观察正三角形、正方形、正五边形、正六边形是不是轴对称图形?如果是,它们又各应有几条对称轴?
3、正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心,边数是偶数的正多边形还是中心对称图形,它的中心就是对称中心
4、边数相同的正多边形相似,它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方
5、 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
以上性质,教师引导学生自主探究和归纳,可以以小组的形式研究,这样既培养学生的探究问题的能力、培养学生的研究意识,也培养学生的协作学习精神
(五)总结
知识:(1)正多边形的中心、半径、边心距、中心角等概念;
(2)正多边形与圆的关系定理、正多边形的性质
能力:探索、推理、归纳等能力
方法:证明点共圆的方法
(六)作业? P159中练习1、2、3
初中数学《圆》教案 3
教学目标:
1.使学生理解直线和圆的相交、相切、相离的概念。
2.掌握直线与圆的位置关系的性质与判定并能够灵活运用来解决实际问题。
3.培养学生把实际问题转化为数学问题的能力及分类和化归的能力。
重点难点:
1.重点:直线与圆的三种位置关系的概念。
2.难点:运用直线与圆的位置关系的性质及判定解决相关的问题。
教学过程:
一.复习引入
1.提问:复习点和圆的三种位置关系。
(目的:让学生将点和圆的位置关系与直线和圆的位置关系进行类比,以便更好的掌握直线和圆的位置关系)
2.由日出升起过程当中的三个特殊位置引入直线与圆的位置关系问题。
(目的:让学生感知直线和圆的位置关系,并培养学生把实际问题抽象成数学模型的能力)
二.定义、性质和判定
1.结合关于日出的三幅图形,通过学生讨论,给出直线与圆的三种位置关系的定义。
(1)线和圆有两个公共点时,叫做直线和圆相交。这时直线叫做圆的割线。
(2)直线和圆有唯一的公点时,叫做直线和圆相切。这时直线叫做圆的切线。唯一的公共点叫做切点。
(3)直线和圆没有公共点时,叫做直线和圆相离。
2.直线和圆三种位置关系的性质和判定:
如果⊙O半径为r,圆心O到直线l的距离为d,那么:
(1)线l与⊙O相交 d<r
(2)直线l与⊙O相切d=r
(3)直线l与⊙O相离d>r
三.例题分析:
例(1)在Rt△ABC中,AC=3cm,BC=4cm,以C为圆心,r为半径。
①当r= 时,圆与AB相切。
②当r=2cm时,圆与AB有怎样的位置关系,为什么?
③当r=3cm时,圆与AB又是怎样的位置关系,为什么?
④思考:当r满足什么条件时圆与斜边AB有一个交点?
四.小结(学生完成)
五、随堂练习:
(1)直线和圆有种位置关系,是用直线和圆的个数来定义的;这也是判断直线和圆的位置关系的重要方法。
(2)已知⊙O的直径为13cm,直线L与圆心O的距离为d。
①当d=5cm时,直线L与圆的位置关系是;
②当d=13cm时,直线L与圆的`位置关系是;
③当d=6。5cm时,直线L与圆的位置关系是;
(目的:直线和圆的位置关系的判定的应用)
(3)⊙O的半径r=3cm,点O到直线L的距离为d,若直线L 与⊙O至少有一个公共点,则d应满足的条件是( )
(A)d=3 (B)d≤3 (C)d<3 d="">3
(目的:直线和圆的位置关系的性质的应用)
(4)⊙O半径=3cm。点P在直线L上,若OP=5 cm,则直线L与⊙O的位置关系是( )
(A)相离(B)相切(C)相交(D)相切或相交
(目的:点和圆,直线和圆的位置关系的结合,提高学生的综合、开放性思维)
想一想:
在平面直角坐标系中有一点A(-3,-4),以点A为圆心,r长为半径时,
思考:随着r的变化,⊙A与坐标轴交点的变化情况。(有五种情况)
六、作业:P100—2、3
初中数学《圆》教案 4
一、课题
27.3 过三点的圆
二、教学目标
1.经历过一点、两点和不在同一直线上的三点作圆的过程
2.. 知道过不在同一条直线上的三个点画圆的方法
3.了解三角形的外接圆和外心
三、教学重点和难点
重点:经历过一点、两点和不在同一直线上的三点作圆的过程
难点:知道过不在同一条直线上的三个点画圆的方法
四、教学手段
现代课堂教学手段
五、教学方法
学生自己探索
六、教学过程设计
(一)、新授
1.过已知一个点A画圆,并考虑这样的圆有多少个?
2.过已知两个点A、B画圆,并考虑这样的圆有多少个?
3.过已知三个点A、B、C画圆,并考虑这样的圆有多少个?
让学生以小组为单位,进行探索、思考、交流后,小组选派代表向全班学生展示本小组的探索成果,在展示后,接受其他学生的质疑
得出结论:过一点可以画无数个圆;过两点也可以画无数个圆;这些圆的圆心都在连结这两点的线段的垂直平分线上;经过不在同一直线上的三个点可以画一个圆,并且这样的圆只有一个
不在同一直线上的`三个点确定一个圆
给出三角形外接圆的概念:经过三角形三个顶点可以作一个圆,这个圆叫作三角形的外接圆,外接圆的圆心叫做三角形的外心。
例:画已知三角形的外接圆
让学生探索课本第15页习题1
一起探究
八年级(一)班的学生为老区的小朋友捐款500元,准备为他们购买甲、乙 两种图书共12套,已知甲种图书每套45元,乙种图书每套40元。这些钱最多能买甲种图书多少套?
分析:带领学生完成课本第13页的表格,并完成2、3 问题,使学生清楚通过列表可以更好的分析题目,对于情景较为复杂的问题情景可采用这种分析方法解题。另外通过此题,使学生认识到:在应不等式解决实际问题时,当求出不等式的解集后,还要根据问题的实际意义确定问题的解。
(二)、小结
七、练习设计
P15习题2、3
八、教学后记
初中数学《圆》教案 5
教学目标
通过探究,使学生发现、掌握切线长定理,并初步长定理,并初步学会应用切线长定理解决问题,同时通过从三角形纸片中剪出最大圆的实验的过程中发现三角形内切圆的画法,能用内心的性质解决问题。
教学重点
切线长定理及其应用,三角形的内切圆的画法和内心的性质。
教学难点
三角形的内心及其半径的确定。
教具准备
投影仪,胶片
教学过程
教师 活动 学生活动
(一)复习导入:
请同学们回顾一下,如何判断一条直线是圆的切线?圆的切线具有什么性质?(经过半径外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径。)
你能说明以下这个问题?
如右图所示,PA是 的平分线,AB是⊙O的切线,切点E,那么AC是⊙O的切线吗?为什么?
回顾旧知,看谁说的全。
利用旧知,分析解决该问题。
(二)
实践与探索 问题1、从圆外一点可以作圆的几条切线?请同学们画一画。
2、请问:这一点 与切点的 两条线段的长度相等吗?为什么?
3、切线长的定义是什么?
通过以 上几个问题的解决,使同学们得出以下的结论:
从圆外一点可以引圆的两条切线,切线长相等。这一点与圆心的'连线
平分两条切线的夹角。 在解决以上问题时,鼓励同学们用不同的观点、不同的知识来解决问题,它既可以用书上阐述的对称的观点解决,也可以用以前学习的其他知识来解决问题。
(三)拓展与应用 例:右图,PA、PB是,切点分别是A、B,直线EF也是⊙O的切线,切点为P,交PA、PB为E、F点,已知 , ,(1)求 的周长;(2)求 的度数。
解:(1)连结PA、PB、EF是⊙O的切线
所以 ,
所以 的周长 (2)因为PA、PB、EF是⊙O的切线
所以 ,
所以
所以
画图分析探究,教学中应注重基本图形的教学,引导学生发现基本图形,应用基本图形解决问题。
(四)小结与作业 谈一下本节课的 收获 ? 各抒己见,看谁 说得最好
(五)板书设计
切线(2)
切线长相等 例:
切线长性质
点与圆心连 线平分两切线夹角
(六)教学后记
初中数学《圆》教案 6
教学目标
1.初步掌握用直接开平方法解一元二次方程,会用直接开平方法解形如的方程;
2.初步掌握用配方法解一元二次方程,会用配方法解数字系数的一元二次方程;
3.掌握一元二次方程的求根公式的推导,能够运用求根公式解一元二次方程;
4.会用因式分解法解某些一元二次方程。
5.通过对一元二次方程解法的教学,使学生进一步理解“降次”的数学方法,进一步获得对事物可以转化的认识。
教学重点和难点
重点:一元二次方程的四种解法。
难点:选择恰当的方法解一元二次方程。
教学建议:
一、教材分析:
1.知识结构:一元二次方程的解法
2.重点、难点分析
(1)熟练掌握开平方法解一元二次方程
用开平方法解一元二次方程,一种是直接开平方法,另一种是配方法。
如果一元二次方程的`一边是未知数的平方或含有未知数的一次式的平方,另一边是一个非负数,或完全平方式,如方程,和方程就可以直接开平方法求解,在开平方时注意取正、负两个平方根。
配方法解一元二次方程,就是利用完全平方公式,把一般形式的一元二次方程,转化为的形式来求解。配方时要注意把二次项系数化为1和方程两边都加上一次项系数一半的平方这两个关键步骤。
(2)熟记求根公式和公式中字母的意义在使用求根公式时要注意以下三点:
1)把方程化为一般形式,并做到、之间没有公因数,且二次项系数为正整数,这样代入公式计算较为简便。
2)把一元二次方程的各项系数、代入公式时,注意它们的符号。
3)当时,才能求出方程的两根。
(3)抓住方程特点,选用因式分解法解一元二次方程
如果一个一元二次方程的一边是零,另一边易于分解成两个一次因式时,就可以用因式分解法求解。这时只要使每个一次因式等于零,分别解两个一元一次方程,得到两个根就是一元二次方程的解。
我们共学习了四种解一元二次方程的方法:直接开平方法;配方法;公式法和因式分解法。解方程时,要认真观察方程的特征,选用适当的方法求解。
二、教法建议
1.教学方法建议采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,学生获取知识必须通过学生自己一系列思维活动完成,启发诱导学生深入思考问题,有利于培养学生思维灵活、严谨、深刻等良好思维品质
2.注意培养应用意识。教学中应不失时机地使学生认识到数学源于实践并反作用于实践
初中数学《圆》教案 7
知识技能目标
1、理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质;
2、利用反比例函数的图象解决有关问题。
过程性目标
1、经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质;
2、探索反比例函数的图象的性质,体会用数形结合思想解数学问题。
教学过程
一、创设情境
上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线。那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k≠0)的图象,探究它有什么性质。
二、探究归纳
1、画出函数的图象。
分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x≠0。
解
1、列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:
2、描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(—6,—1)、(—3,—2)、(—2,—3)等。
3、连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支。这两个分支合起来,就是反比例函数的图象。
上述图象,通常称为双曲线(hyperbola)。
提问这两条曲线会与x轴、y轴相交吗?为什么?
学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤)。
学生讨论、交流以下问题,并将讨论、交流的结果回答问题。
1、这个函数的图象在哪两个象限?和函数的图象有什么不同?
2、反比例函数(k≠0)的图象在哪两个象限内?由什么确定?
3、联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?
反比例函数有下列性质:
(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;
(2)当k
注
1、双曲线的两个分支与x轴和y轴没有交点;
2、双曲线的两个分支关于原点成中心对称。
以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?
在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少。
在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小。
三、实践应用
例1若反比例函数的`图象在第二、四象限,求m的值。
分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+1
解由题意,得解得。
例2已知反比例函数(k≠0),当x>0时,y随x的增大而增大,求一次函数y=kx—k的图象经过的象限。
分析由于反比例函数(k≠0),当x>0时,y随x的增大而增大,因此k0,所以直线与y轴的交点在x轴的上方。解因为反比例函数(k≠0),当x>0时,y随x的增大而增大,所以k
例3已知反比例函数的图象过点(1,—2)。
(1)求这个函数的解析式,并画出图象;
(2)若点a(—5,m)在图象上,则点a关于两坐标轴和原点的对称点是否还在图象上?
分析(1)反比例函数的图象过点(1,—2),即当x=1时,y=—2。由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;
(2)由点a在反比例函数的图象上,易求出m的值,再验证点a关于两坐标轴和原点的对称点是否在图象上。
解(1)设:反比例函数的解析式为:(k≠0)。
而反比例函数的图象过点(1,—2),即当x=1时,y=—2。
所以,k=—2。
即反比例函数的解析式为:。
(2)点a(—5,m)在反比例函数图象上,所以,点a的坐标为。
点a关于x轴的对称点不在这个图象上;
点a关于y轴的对称点不在这个图象上;
点a关于原点的对称点在这个图象上;
例4已知函数为反比例函数。
(1)求m的值;
(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?
(3)当—3≤x≤时,求此函数的最大值和最小值。
解(1)由反比例函数的定义可知:解得,m=—2。
(2)因为—2
(3)因为在第个象限内,y随x的增大而增大,所以当x=时,y最大值=;
当x=—3时,y最小值=。
所以当—3≤x≤时,此函数的最大值为8,最小值为。
例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米。
(1)写出用高表示长的函数关系式;
(2)写出自变量x的取值范围;
(3)画出函数的图象。
解(1)因为100=5xy,所以。
(2)x>0。
(3)图象如下:
说明由于自变量x>0,所以画出的反比例函数的图象只是位于第一象限内的一个分支。
四、交流反思
本节课学习了画反比例函数的图象和探讨了反比例函数的性质。
1、反比例函数的图象是双曲线(hyperbola)。
2、反比例函数有如下性质:
(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;
(2)当k
五、检测反馈
1、在同一直角坐标系中画出下列函数的图象:
(1);(2)。
2、已知y是x的反比例函数,且当x=3时,y=8,求:
(1)y和x的函数关系式;
(2)当时,y的值;
(3)当x取何值时,?
3、若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值。
4、已知反比例函数经过点a(2,—m)和b(n,2n),求:
(1)m和n的值;
(2)若图象上有两点p1(x1,y1)和p2(x2,y2),且x1
初中数学《圆》教案 8
教学目标:
1、认识圆,知道圆的各部分名称,知道同一圆内半径、直径的特征,初步学会用圆规画圆。
2、使学生掌握圆的特征,理解在同一个圆里直径与半径的关系,能根据这种关系求圆的直径或半径。
3、培养学生的观察、分析、抽象、概括等思维能力和初步的空间观念,使学生初步学会用数学知识解释、解决生活中的实际问题。
教学重难点:
掌握圆的特征,理解在同一个圆里直径和半径的关系,能根据这种关系求圆的直径或半径。
教学准备:
多媒体一套。学生准备硬币等圆形物体若干;圆规一把、直尺一把、三角尺一副;小剪刀一把;红色、蓝色彩笔各一支。
教学过程:
一、导入新课
1、导入:同学们玩过套圈游戏吗?如果现在有几位同学要进行套圈比赛,站成什么形状比较合理?
2、你见过圆吗?生活中你在哪儿见过?能说说吗?一直说下去能说完吗?的确圆是无处不在的。(打开有关生活中圆的课件)问:同学们你们从中又看到了圆了吗?你会画圆吗?动手试一试,看谁想的方法多。
3、怎样可以画出一个圆?还有其它方法吗?
师根据学生口答边画圆边归纳方法:
(1)定长(2)定点(3)旋转
请大家用这个方法再画一个圆,并很快把它剪下来。
要进行套圈比赛的圆肯定比较大,用圆规画行吗?怎么办?
4、揭题:为什么站成圆形大家会觉得比较公平呢?
今天我们一起来学习圆的认识(板书课题),相信通过今天的学习大家一定会明白其中的道理。
二、探究新知
(一)认识圆心
1、圆形画好了,游戏可以开始了吗?套圈用的瓶子要放在哪儿呢?
2、你能很快找出圆的中心吗?试一试,找出刚才剪下的圆的中心。谁先发现,谁就先上来介绍。
说明:圆的中心叫“圆心”,就是画圆时针固定的一点,用字母O表示。(师板书:圆心O)
(二)认识半径
1、圆画好了,瓶子放在圆心了,接下来怎样?(站人)站在哪里?(圆上)哪儿是“圆上”?指给你的同桌看一看,谁能上来指一指?
2、要站在圆上,随便哪一点都可以吗?为什么?怎样证明?(引导学生画一画、量一量)
说明:象这样,连接圆心到圆上任意一点的线段,叫做圆的半径,用字母r来表示。
3、你能画出几条半径?
4、认识特点:在同一个圆里,有( )条半径,它们的长度( )
5、想一想:(1)画圆时,圆规两脚间的距离其实就是圆的什么?针尖固定的一点呢?
6、在白纸上点两个点,以它们为圆心分别画一个半径2厘米的圆和一个半径1.5厘米的圆,比比哪个圆大些?想想圆的大小由什么决定?圆的位置由什么决定?
(三)认识直径及直径与半径的关系
1、刚才我们用折纸的方法确定圆心时,发现圆上有许多折痕。这些折痕叫什么?有什么特点?与半径有什么关系?请大家看看书、动动手画一画,看看能画几条?并在小组中说一说。
2、组织学生交流,教师画直径时有意两端不在圆上,让学生判断。
教师板书:(1)直径:d
(2)d=2r或r=1/2d
追问:直径肯定是半径的2倍吗?你是怎么知道的?看一下你手中圆的`直径,会不会是黑板上圆的半径的2倍?你认为应该怎么说?(板书:在同一个圆里)
3、口答:画一个直径是5厘米的圆,圆规两脚间的距离应是( )
4、完成课本的做一做。
三、全课总结
今天我们一起认识了什么?现在你能解释一下;为什么玩套圈游戏时大家站成圆形、瓶子放在圆心比较公平吗?
四、延伸拓展
1、同学们想一起到篮球场玩套圈游戏,你会怎么安排?说说你的想法。
2、在篮球场上要画一个直径6米的大圆,至少要准备一根多少米长的绳子?
站在这个圆上的同学中,离得最远的两个同学最多相距多少米?
追问:依据是什么?怎样证明“两端在圆上的线段中,直径最长?
3、利用发现的规律你能测出硬币等圆形物体的直径吗?
4、生活中哪些物体必须做成圆形的,为什么?
(课件出示两辆跑车)让学生展开讨论:车轮为什么是圆的?
讲述:同学们,其实何尝是大自然对圆情有独钟?在我们人类生活中的每一个角落里,圆都扮演着重要角色,都成了美的使者和化身。(显示生活中圆的魅力)
初中数学《圆》教案 9
学生分析:
学生在日常生活中经常接触到圆形物体,在低年级也已经有初步的认识过程,但都是直观的表象的认识。
教学目标:
1.知识与技能:使学生认识圆,知道圆各部分的名称;掌握圆的特征,理解直径和半径的相互关系。初步学会用圆规画圆。
2.过程与方法:通过分组学习,动手操作,主动探索等活动,初步培养学生的合作意识和创新意识,以及抽象、概括等能力,进一步发展学生的空间观念。
3.情感与价值观:通过学习,提高学生对数学的好奇心与求知欲,初步认识数学与人类生活的密切联系,体验数学活动的意义和作用。
教学重点:
掌握圆的特征,同一个圆里直径和半径的关系。
教学难点:
掌握圆的特征并理解其在生活中的运用,用圆规按要求画圆。
教具准备:
多媒体课件一套。
学具准备:
圆形纸片、圆规、直尺、三角板、彩笔、硬币、图、线。
教学过程:
一、师生谈话,导入本课知识
师:同学们这节课老师给大家带来一些美丽的图案,你们想看吗?
生:想看。
师:看时请同学们认真观察这些图案有什么共同特征?
生:这些图案都是由圆形组成的。
师:对!这么美的图案你们能画出来吗?(不能)这节课我们就一起研究有关圆的知识,相信大家不但学会圆的许多知识,还能画出比老师还要美的图案。
生:从生活中寻找自己所认为的圆,有可能会回答:①自行车汽车的轮子是圆的;②篮球乒乓球是圆的;③硬币是圆的……
(第一次自主探索:画一画。)
二、自主探索,折一折
师:看来大家掌握得确实不错,生活中,车的轮子为什么制成圆的,车轴应该装在什么位置?下面请同学们拿出这样的圆形纸片,我们一起来研究圆。
1、把一个圆对折、再对折,你发现什么?
生折一折,找一找,画一画,反馈。
学生观察反馈:
①留下一条折痕;
②折痕刚好通过圆心;
③折痕将圆平均分成了两半;
生:
①各条折痕的交点刚好在圆心上;
②通过圆心可以折无数条直径和无数条半径;
2、认识圆心,直径,半径。
师小结后学生找出它的圆心、半径和直径,并把它画出来。
师:同学们真棒,你还能从刚才折的小圆片中发现什么知识吗?
3、理解半径直径的特点及关系。
同圆中所有半径都相等,所有直径都相等。
直径是半径的2倍;
教师根据学生回答板书:d=2rr=d÷2
师出示两个大小不同的圆让学生比较直径半径的倍数关系成立的条件。
让学生明确:应在同圆或等圆内。
三、用圆规画圆
师介绍:用圆规画圆最方便。
因为学生在认识圆之前,已经对圆有大量的生活经验,所以让学生想出各种办法得到圆,就能使学生感受到圆其实离我们生活很近,它就在我们的身边。通过全方位的学习活动,促进学生知识与能力的协同发展。第二次尝试画一画——用圆规画圆。
师:那请用学们用圆规自已尝试画一个圆。
没有画成功的同学把图案展示,我们愿意帮助你寻找原因。
生:(1、画移位的,2、重新画又找不到位置的,)如:问为什么会移位,为什么会找不到原来的位置?
学生回答问题的原因,教师边示范边讲解:所以画圆的时候要先确定位置,点上一点,把钢针戳在点上,用手捏住圆规的头,将圆规略微倾斜一点,旋转一周,一个圆就画好了。请大家也一起试试看。
师:学生根据老师的.讲解独立画圆。
师:大家画的圆的位置都一样吗?
生:不一样。
师:为什么会不一样?
生:因为刚针戳的位置不一样,(或点的位置不一样)
师:看来这个点能决定圆的位置,(板能决定圆的位置)
师:请同桌再互相比较一下你们刚才画的圆大小完全一样吗?
生:不一样。
师:为什么会不一样?
生:因为我们圆规的开口大小不一样。
生:圆规的两脚开得越大,所画的圆也就越大,圆规两脚间的距离能决定圆的大小。(师板书:能决定圆的大小)
(放音乐,让学生动手操作去发现去总结让学生感受到成功的喜悦。)
四、课堂练习,巩固深化
师:同学们掌握得真好,下面让我们来完成几道挑战题
(见课件)
1、判断直径和半径。
2、填空。
3、你能用今天学习的知识来解释一下为什么车轮子要设计成圆形而不设计成方形或其它形状吗?3
五、创作:
画出任意大小的圆,组合自己心中最美丽的图案!(学生在创作的过程中,播放轻音乐。)创作完成后在实物展台上展示
六、总结:
通过这节课的学习,你有什么收获吗?
初中数学《圆》教案 10
【教学资料】
课本第5--7页例1、例2。完成相应的“做一做”题目和部分练习
【教学目标】
1、使学生理解圆周率的好处,理解和掌握圆的周长计算公式,并能解决简单的实际问题
2、培养学生操作、计算潜力,在学生操作、计算的过程中发现规律,培养学生抽象概括潜力。
3、培养学生创新思维潜力。
4、通过“圆的直径、周长的变化,圆周率不变”的探索,对学生渗透辩证唯物主义的启蒙教育。结合我古代数学家祖冲之的故事,对学生进行爱祖国、爱中华民族的教育。
【教学重点】
探索圆的周长公式
【教学难点】
对圆周率π的理解
【学具准备】
每四个学生一组
1、直径1厘米、2厘米、3厘米、4厘米的圆片各一个
2、直尺一把
3、细绳一条、两根长31.4厘米的细铁丝
4、实验表格
5、计算器
【教具准备】
实物投影议、电脑
【教学过程】
一、设疑导入、培养创新意识
1、电脑演示:有甲、乙两学生争论。
甲说:“我脑袋大。”
乙说:“我脑袋比你在大。”
师:“如果你是裁判员应如何评判,两人才能都服气?”
2、学生四人小组讨论
请学生说一说自己的方法
甲生:“看谁的脑袋大。”
师:“如果看不出来怎样办?”
乙生:“把头放入水中,看谁的水面上升得高谁的头就大。”
师:“十分好!很有创意。”
丙生:“用绳绕头一周,测量绳的长度。”
师:“你的办法很有新意,我们的头近似球体,横切面近似于圆,你用绳子测的长度(线测方法),就是脑袋的横切面的周长,谁的周长大谁的头就大。这天我们共同学习“圆的周长”。师板书圆的周长的定义。
二、动手尝试操作,探求新知
1、动手尝试操作
(1)组织学生四人小组用绳测量直径是1厘米和2厘米的小圆的周长,并把测量的结果填入实验表格。
圆的周长c(厘米)
直径d(厘米)
周长÷直径(c÷d)
1
2
3
4
(2)组织学生讨论,除了用绳作测量工具外,还有什么办法能测出圆的周长。
讨论后得出:也能够把圆放在尺上滚动一周,来直接量出它的周长(滚动方法测量),把圆对折进行测量(折叠法)。
(3)用滚动的方法测出直径是3厘米、4厘米的圆的周长,并填好实验表格。
2、探索规律
(1)师将填好的实验表格在实物投影议上出示。
学生观察、分析、讨论得出:圆的周长和直径变化,比值不变,都是3倍多一点。
(2)思想教育
师:“任何圆的周长和直径的比值都是3倍多一点,是一个固定不变的数。我们把圆的周长和直径的比值叫做圆周率,圆周率用字母π(读pai)来表示。其实,约2000年前,中国的古代数学著作《周髀算经》中就有:“周三径一”的说法,意思是说圆的周长是直径的3倍。约1500年前,我国有一位伟大的数学家、天文学家祖冲之,他计算出圆周率应在3.1415926和3.1415927之间,成为世界上第一个把圆周率的`值计算精确到6位小数的人。他的这一项伟大成就比国外数学家得出这样的精确数值的时间至少早一千年。π是个无限不循环小数,在计算过程中通常取3.14。
教师用绳的一端系一粉笔头,手拿另一端,绕动绳粉笔头在空中“画出一圈”。
师:“像这个圆你能用线测和滚动的方法量出它的周长吗?”
生:“不能”。
师:“这说明用线测和滚动的方法测量圆的周长是有局限的。那么,我们能不能找出圆周长的计算方法呢?”
(3)推导圆周长公式
师:“从公式看出,明白什么条件能够求出圆周长?”
生:“直径、半径。”
师:“如果圆的周长已知,怎样才能求出圆的半径或直径?”
三、圆周长公式的应用(尝试练习)
1、出示例1
学生尝试练习,找学生板演,师生共同讲评。
2、完成例1下面的“做一做”。
3、出示例2
学生尝试练习,找学生板演,师生共同讲评。
4、完成例2下面的“做一做”题目。
5、第8页练习二的1、2、3题。
四、再次尝试操作、第二次创新
1、求出人脑袋的横切面的半径
(1)利用桌面上现有的测量工具,通过计算,怎样求出你脑袋的半径?
(2)四人一组互相合作,动手测量,计算时可利用计算器。
(3)将运算的结果对全班公布,并说明理由。
2周长相等的正方形、圆,谁的面积大
(1)组织学生将长为31.4厘米的铁丝折成正方形和圆形,比一比谁的面积大?
师将折好的正方形和圆形在实物投影仪上显示。得出结论“圆的面积较大。”
(2)四人小组讨论:为什么饭店的桌面一般都设计成圆形的,而课桌设计成长方形的桌面。把讨论的结果讲给同学们听。
五、全课小结
1、这天我们学习了什么资料?
2、经过这节课的学习,你有什么收获?
3、师:“这天我们通过测量学习了圆的周长的求法,而且我们还明白了周长相等的正方形和圆,圆的面积较大。下节课我们将学习如何求圆的面积”。
六、作业
第9页练习二中的第9、10、11题。
板书设计
圆的周长
围成圆的曲线的长叫圆的周长
c=πdc=2πr
例1、一张圆桌面的直径是0.95米。这张圆桌面的周长是多少米?(得数保留两位小数)
(生板演)3.14×0.95
=2.983
=2.98(米)
答:这张圆桌面的周长约是2.98米。
例2、一个圆形水池,周长是37.68米。它的直径是多少米?
(生板演)解:设水池的直径是X米。
3.14×X=37.68
X=12
或:37.68÷3.14=12(米)
答:水池的直径是12米。
【初中数学《圆》教案】相关文章:
初中数学圆教案04-17
初中数学教案《圆》03-05
数学圆的面积教案02-14
圆数学教案03-29
数学圆的认识教案12-05
关于数学圆的教案02-28
小学数学圆的面积的教案04-18
圆的面积的数学教案01-21
圆的周长数学教案01-20