- 相关推荐
《追赶小明》教案(精选6篇)
作为一名为他人授业解惑的教育工作者,就有可能用到教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。教案要怎么写呢?下面是小编精心整理的《追赶小明》教案,仅供参考,大家一起来看看吧。
《追赶小明》教案 篇1
一、教学目标
知识与技能:能借助“线段图”分析复杂问题中的数量关系,从而列出方程,解决问题。
熟悉行程问题中路程、速度、时间之间的关系,从而实现从文字语言到符号语言的转换。
过程与方法:
1.经历画“线段图”找等量关系,列出方程解决问题的过程,进一步体验画“线段图”也是解决实际问题的有效途径。
2.体会“方程”是解决实际问题的有效模型,并进一步发展学生的文字语言、符号语言、图形语言的转换能力。
情感态度与价值观:感受我们身边的数学,体会家人对我们的爱,要热爱家人,热爱生活
二、教学重点、难点
重点:能列出一元一次方程解决实际问题难点:利用线段图找到题中的等量关系
三、教学过程:
(一)精彩一练
1.问答题
(1)、小明家离学校有1000米,他骑车的速度是25米/分,那么小明从家到学校需___小时。
(2)、甲、乙两地相距1600千米,一列火车从甲地出发去乙地,经过16小时,距离乙地还有240千米。这列火车每小时行驶多少千米?
2.抢答题
(1)、用一元一次方程解决问题的基本步骤:____________
(2)、行程问题主要研究、三个量的关系。
路程=__________,速度=_____,时间=______。
(3)若小明每秒跑4米,那么他10秒跑___米。
(二)创设情趣、明确目标
以动画的形式演绎一位同学早晨忘带作业,他刚出门不久,父母就发现他忘带作业,于是赶快加速赶往学校给他送作业,最终在去学校的路上追上了他.
从学生熟悉的生活经历出发,选择学生身边的、感兴趣的“能否追上小明”这一事件,
激发学生的好奇心,揭示生活中蕴含着我们数学的一个常见问题追及问题,从而引出课题及例题。
(三)自主学习
例1:小明早晨要在7:20以前赶到距家1000米的学校上学,一天,小明以80米/分的速度出发.5分钟后,小明的爸爸发现他忘了带历史作业,于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他.
(1)爸爸追上小明用了多长时间?
(2)追上小明时,距离学校还有多远?
独立思考,完成学案上的问题:
1、根据题目已知条件,画出线段图:
2、找出等量关系:
小明走过的路程=爸爸走过的路程.3、板书规范写出解题过程:
解:
(1)设爸爸追上小明用了x分钟,
根据题意,得80×5+80x=180x解,得x=4.
答:爸爸追上小明用了4分钟.
(2)180×4=720(米)
1000-720=280(米)
答:追上小明时,距离学校还有280米.
(学生独立完成,找到等量关系并列出方程,教师巡视学生并给予检查和指导。请书写规范的.学生到前面板演,并讲解其解题思路,其他同学对照黑板谈谈自己的不足之处)
分析出发时间不同的追及问题,能画出线段图,进行图形语言、符号语言与文字语言之间的相互转化,理解题中的等量关系,培养学生思维的灵活性,进一步列出方程,解决问题,既能娴熟使用“线段图”又能利用方程的思想解决问题
例:甲、乙两站间的路程为450千米,一列快车从甲站开出,每小时行驶85千米,一列慢车从乙站开出,每小时行驶65千米.设两车同时开出,同向而行,则快车几小时后追上慢车?
(学生小组合作完成本题目,按照例题的方法步骤,通过画线段图,分析已知量,找等量关系,列方程解答。教师巡视学生并给予检查和指导。)
(四)展示生成
1、通过个别学生分析已知条件,引导大家正确画出线段图:
2、找出等量关系:快车所用时间=慢车所用时间;
快车行驶路程=慢车行驶路程+相距路程.
3.解题过程:
解:设快车x小时追上慢车,
据题意得85x=450+65x.
解,得x=22.5.
答:快车22.5小时追上慢车.
(请书写规范的学生到前面板演,并讲解其解题思路,其他同学有不同看法可相互补充。)点播导学
本节课主要研究行程问题中的追及问题,
(1)同地不同时,总路程相等;
(2)同时不同地,时间相等,总路程相等。两类题都是根据总路程相等列方程。可以通过画线段图,理解题中的等量关系,进一步列出方程,解决问题.
育红学校七年级学生步行到郊外旅行,1班的学生组成前队,步行的速度为4km/h,2班的学生组成后队,速度为6km/h,前队出发1h后,后队出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12km/h。
请根据以上的事实提出问题并尝试回答。
(分小组讨论,提出不同的可能的问题,并尝试解答,比较哪组几块又准确,想出的方法又多,小组派代表讲给大家听!)
问1:后队追上前队用了多长时?
问2:后队追上前队时联络员行了多少路?
问3:联络员第一次追上前队时用了多长时间?
问4:当后队追上前队时,他们已经行进了多少路程?
问5:联络员在前队出发多少时间后第一次追上前队?
(五)达标测评
练习1:小兵每秒跑6米,小明每秒跑7米,小兵先跑4秒,小明几秒钟追上小兵?练习2:甲、乙两人相距280,相向而行,甲从A地每秒走8米,乙从B地每秒走6米,那么甲出发几秒与乙相遇?总结提高
引导学生自己对所学知识和思想方法进行归纳和总结,从而形成自己对数学知识的理解和解决问题的方法策略.强调本课的重点内容是要学会借线段图来分析行程问题,并能掌握各种行程问题中的规律及等量关系.1.会借线段图分析行程问题.2.各种行程问题中的规律及等量关系.同向追及问题:
①同时不同地甲路程+路程差=乙路程;甲时间=乙时间
②同地不同时甲时间+时间差=乙时间;甲路程=乙路程
(六)预习布置、强调任务
复习本单元所学内容,总结一些常见的应用题题型作业:P151习题5.9第2题
《追赶小明》教案 篇2
教学目标
1.熟悉利用等式的性质解一元一次方程的基本过程.
2.通过具体的例子,归纳移项法则
3.掌握解一元一次方程的.基本方法,能熟练求解一元一次方程(数字系数),能判别解的合理性.
教学重点
重点是移项法则
教学难点
重点是移项法则
教学流程
1.提出问题:解方程:5x-2=8
2.自主探索、合作交流:
先由学生独立思考求解,再小组合作交流,师生共同评价分析.
方法1:
解:方程两边都加上2,得5x-2+2=8+2
也就是5x=8+2
合并同类项,得5x=10
所以,x=2
3.理性归纳、得出结论
(让学生通过观察、归纳,独立发现移项法则.)
比较方程5x=8+2与原方程5x-2=8,可以发现,这个变形相当于
5x-2=8 5x=8+2
即把原方程中的-2改变符号后,从方程的一边移到另一边,这种变形叫做移项.
教学建议:关于移项法则,不应只强调记忆,更应强调理解.学生开始时也许仍习惯于利用逆运算而不利用移项法则来求解方程,可借助例题、练习题使相互逐步体会到移项的优越性).
方法2;
解:移项,得5x=8+2
合并同类项,得5x=10
方程两边都除以5,得x=2
4.运用反思、拓展创新
[例1]解下列方程:(1) 2x+6=1 (2) 3x+3=2x+7
教学建议:先鼓励学生自己尝试求解方程,教师要注意发现学生可能出现的错误,然后组织学生进行讨论交流.
[例2]解方程:
教学建议:①先放手让学生去做,学生可能采取多种方法,教学时,不要拘泥于教科书中的解法,只要学生的解法合理,就应给予鼓励.
②在移项时,学生常会犯一些错误,如移项忘记变号等.这时,教士不要急于求成,而要引导学生反思自己的解题过程.必要时,可让学生利用等式的性质和移项法则两种方法解例1、例2中的方程,并将两者加以对照,进而使学生加深对移项法则的理解,并自觉地改正错误.
5.小结回顾:学生谈本节课的收获与体会.师强调:移项法则.
6.布置作业: (略)
《追赶小明》教案 篇3
一、教学目标
【知识与技能】
1、理解一元一次方程,以及一元一次方程解的概念。
2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。
3、掌握检验某个数值是不是方程解的方法。
【过程与方法】
在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用新知识解决实际问题的能力。
【情感态度和价值观】
让学生体会到从算式到方程是数学的进步,体现数学和日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学生学习数学的热情。
二、教学重点
建立一元一次方程的概念,寻找相等关系,列出方程。
三、教学难点:根据具体问题中的相等关系,列出方程。
四、教学准备:多媒体教室,配套课件。
五、教学过程:
1。游戏导入,设置悬念
师:同学们,老师学会了一个魔术,情你们配合表演。请看大屏幕,这是20xx年10月的日历,请你用正方形任意框出四个日期,并告诉老师这四个数字的和,老师马上就告诉你这四个数字。
生1:24,师:2,3,9,10生2:84师:17,18,24,25
师:同学们想学会这个魔术吗?生:想!
师:通过这节课的学习,同学们一定能学会。
2。突出主题,突出主体
(1)师:看大屏幕,独立思考下列问题,根据条件列出式子。
A。 x的2倍与3的差是5
B。长方形的的长为a,宽比长少5,周长为36,则=36
C。 A、B两地相距180千米,甲乙两车分别从A、B两地出发,相向而行,甲车每小时行驶30千米,乙车得速度是甲车速度的1。5倍,经过t小时相遇,则=180
生:(1)2x—3=5(2)2(a+a—5)=36(3)30t+1。5(30t)=180
师:这些式子小学学习过,它们是()?生:方程。
师:对,含有未知数的等式叫做方程,等号的两边分别叫做方程的左边和右边。(现实,学生齐读)
2、师:小学我们学过简易方程,并用简易方程解决应用题,对于比较复杂的实际应用题,用方程解答起来更加方便。请自己阅读课本P/79—81,(课本内容略)并把课本空空填写完整,不懂的和你的同学交流。还要回答下列问题:
(1)你是如何理解“列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式——方程”?
(2)什么叫一元一次方程?
(3)什么是的解?你找到验证的方法吗?
师:在阅读P/80例题1时老师做出友情提示:
(1)选择一个未知数x
(2)对于这三个问题,分别考虑:
用含x的未知数分别表示正方形的边长;
用含x的未知数表示这台计算机的检修时间;
用含x的未知数分别表示男、女生人数。
(3)找一个问题中的相等关系列出方程,学生讨论出上述答案后
师:大屏幕显示上述问题的答案
三、体现新时代教师是学生学习的合作者
在大多数学生完成课本阅读和解答好课本问题、上述问题的基础上,请几名代表学生汇报所列方程,并解释方程等号左右两边式子的含义。
师:(强调)(1)方程两边表示的是同一个数;
(2)左右两边表示的方法不同。
【这一小小的'点拨,有画龙点睛之作用,突出方程的实质性含义,为以后列出更复杂的方程打下基础】
四、给学生一个展示自己精彩的舞台
师:本节知识也学完了,你能解释课前老师魔术中的几多秘密?
设任意框出的四个数字的第一个为x,则:
生1:x+(x+1)+(x+7)+(x+8)=24;
生2:x+(x+1)+(x+7)+(x+8)=84
师:很好!如何算出x的值,是我们下一节课要探讨的问题(继续设疑,激发学生的学习兴趣),但老师想当堂检测一下谁掌握的最多,最好,请看大屏幕。
五、基础巩固与知识延伸
(1)基础练习见同步练习册
(2)拓展练习如下;
1、下列四个式子中,是一元一次方程的是()
A。1+2+3+4>8B。2x3C。x=1
D。|10。5x|=0。5yE、
2、已知关于x的方程ax+b=c的解是x=1,则=
3、下面有四张卡片,请你至少抽出三张卡片编写两道一元一次方程,并和你的同学交流一下,看看你和谁不谋而合!
六、小结作业
《追赶小明》教案 篇4
教学目标
①理解一次函数与一元一次方程的关系,会根据一次函数的图象解决一元一次方程的求解问题。
②学习用函数的观点看待方程的方法,初步感受用全面的观点处理局部问题的思想。
③经历方程与函数关系问题的探究过程,学习用联系的观点看待数学问题的辩证思想。
教学重点与难点
重点:一次函数与一元一次方程的关系的理解。
难点:一次函数与一元一次方程的关系的理解。
教学设计
导语
前面我们学习了一次函数。实际上,一次函数是两个变量之间符合一定关系的一种互相对应,互相依存。它与我们七年级学过的一元一次方程,一元一次不等式,二元一次方程组有着必然的`联系。这节课开始,我们就学着用函数的观点去看待方程(组)与不等式,并充分利用函数图象的直观性,形象地看待方程(组)不等式的求解问题。这是我们学习数学的一种很好的思想方法。
注:点明学习本节内容的必要性:
(1)函数与方程、方程组、不等式有着必然的联系;
(2)用函数的观点看待方程、方程组、不等式是我们学数学应该掌握的思想方法。给学生一个本节内容的大致框架。
引入新课
我们先来看下面的两个问题有什么关系:
(1)解方程2x+20=0。
(2)当自变量为何值时,函数y=2x+20的值为零?
问题:
①对于2x+20=0和y=2x+20,从形式上看,有什么相同和不同的地方?
②从问题本质上看,(1)和(2)有什么关系?
③作出直线y=2x+20(建议课前作出,以免影响本节课主题),看看(1)与(2)是怎么样的一种关系?
注:用具体问题作对比,帮助学生理解。
在学生议论的基础上,教师结合教科书38页揭示:(1)与(2)实际上是同一个问题。
探讨归纳
从前面的讨论我们可以看到:一个一元一次方程的求解问题,可以与解某个相应的一次函数问题相一致。你认为在一般情况下,怎样的解一元一次方程问题与怎样的一次函数问题是同一的?
学生小组讨论(鼓励学生用自己的语言说明为什么同一?图象上怎么看?函数方程形式上怎么看?)
师生共同归纳(教科书39页)(略)
让学生在探究过程中理解两个问题的同一性。
练习巩固
1.以下的一元一次方程问题与一次函数问题是同一个问题
序号
一元一次方程问题
一次函数问题
1解方程3x—2=0当x为何值时,y=3x—2的值为O?
2解方程8x+3=0
3当x为何值时,y=—7x+2的值为O?
解:(略)
注:第4题为开放题,鼓励学生有自己的想法与见解。如“解方程3x+5=8”与“当x为何值时,函数y=3x+5的值为8”是同一个问题等等
2。根据下列图象,你能说出哪些一元一次方程的解?并直接写出相应方程的解?
解:5x=0的解是x=0;x+2=0的解是x=—2;—3x+6=0的解是x=2;
由图象可得函数关系式是y=x—1,从而得出x—1=0的解是x=1。
注:此处练习为补充。可以帮助学生在积累了一些理性认识的基础上,增加更多的形象
了解。
综合应用
教科书P.139例1(略)
对于解法2,还可以拓展成:对于函数y=2x+5,当y=17时,求x的值。鼓励学生进一步思考。
注:例1可看成是一次函数与一元一次方程关系的一个直接应用。
归纳提高
框图化小结:
从数的角度看:
求ax+b=0(a≠O)的解x为何值时y=ax+b的值为0
从形的角度看:
求ax+b=0(a≠0)的解确定直线y=ax+b与x轴的横坐标
从数和形两方面总结,帮助学生建立数形结合的观念。
布置作业
教科书P.145习题11。3第1、2题。
《追赶小明》教案 篇5
一、学生起点分析:
通过前几节解方程的学习,学生已经掌握了解方程的基本方法。在此过程中也初步掌握了运用方程解决实际问题的一般过程,基本会通过分析简单问题中已知量与未知量的关系列出方程解应用题,但学生在列方程解应用题时常常会遇到一下困难,就是从题设条件中找不到所依据的等量关系,或虽能找到等量关系但不能列出方程。
二、教学任务分析:
本课以“等积变形”为例引入课题,通过学生自主探究、协作交流,教师点拨相结合的方式,引导学生动手操作的方法分析问题,体会用图形语言分析复杂问题的优点,从而抓住等量关系“锻压前的体积=锻压后的体积”展开教学活动,让学生经历图形变换的应用等活动,展现运用方程解决实际问题的一般过程。因此,本节教材的处理策略是:展现问题情境——提出问题——分析数量关系和等量关系——列出方程,解方程——检验解的合理性。
三、教学目标:
知识与技能:
1、借助立体及平面图形学会分析复杂问题中的数量关系和等量关系,体会直接与间接设未知数的解题思路,从而建立方程,解决实际问题。
2、通过解决实际问题,使学生进一步明确必须检验方程的解是否符合题意。
过程与方法:通过对实际问题的解决,体会方程模型的作用,发展学生分析问题、解决问题、敢于提出问题的能力。
情感态度与价值观:通过对“我变胖了”中的数学问题的探讨,使学生在动手、独立思考、的过程中,进一步体会方程模型的作用,鼓励学生大胆质疑,激发学生的好奇心和主动学习的欲望。
四、教学过程设计:
环节一创设情景,引入新课
内容:同学们自己预习的基础上,用已经备好的橡皮泥,自制“瘦长”与“矮胖”的圆柱,观察分析个中现象。
考虑几个问题:
1、手里的橡皮泥在手压前和手压后有何变化?
2、在你操作的过程中,圆柱由“瘦”变“胖”,圆柱的底面直径变了没有?圆柱的高呢?
3、在这个变化过程中,是否有不变的量?是什么没变?
目的:让学生在玩中体会等体积变化的现象中蕴涵的不变量。同时分析出不变量与变量间的等量关系。
学生能够认识到:手里的橡皮泥在手压前和手压后形状发生了变化,变胖了,变矮了。即高度和底面半径发生了改变。手压前后体积不变,重量不变。
环节二:运用情景,解决问题
内容:例1、将一个底面直径是10厘米、高为36厘米的“瘦长”形圆柱锻压成底面直径为20厘米的“矮胖”形圆柱,高变成了多少?
目的:将上述环节中体会到的形之间的变与不变的关系、量之间的等量关系抽象成数学问题,利用前几节的解方程方法解决实际问题。
实际效果:学生解答过程布列方程很顺利,有的学生还使用了下面的表格来帮助分析。
锻压前锻压后
底面半径5cm 10cm
高36cm xcm
体积π×25×36 π×100x
由实验操作环节知“锻压前的体积=锻压后的体积”,从而得出方程。
解:设锻压后的圆柱的高为xcm,由题意得
π×25×36=π×100x。
解之得x=9。
此时有学生将π的值取3.14,代入方程,教师应在此时给予指导,不要早说,现在恰到好处!
(1)此类题目中的π值由等式的基本性质就已约去,无须带具体值;
(2)若是题目中的π值约不掉,也要看题目中对近似数有什么要求,再确定π值取到什么精确程度。
过程感悟:本节内容通过一幅几何图形展示题目中的一些数量关系,而实际操作的`过程有同学将圆柱体变成了长方体,需要教师把握教育机会,引导学生作出相关的解释。
分析:锻压前锻压后
底面半径5cm长acm,宽bcm
高36cm xcm
体积π×25×36 abx
环节三:操作实践,发现规律
内容:学生用预先准备好的40厘米长的铁丝,以小组作出不同形状的长方形,通过测量边长,近似求出长方形的面积,比较小组内六个同学的计算结果,你发现了什么?
目的:我们知道,感知到的东西往往没有自己亲手经历操作后的感受来得实在。所以设置此环节,让学生手、眼、脑几个感官并用,在操作中体会,在计算中验证,在变化中发现。这样能培养学生观察、分析,归纳、总结等数学学习中不备数学思想与数学方法,也同时让学生感悟最复杂的问题中的道理,就在我们玩的过程,就在我们的生活中。
实际效果:
长(cm)宽(cm)面积(cm2)
长方形1 15 5 75
长方形2 13.6 6.4 86.4
长方形3 12.8 7.3 93.44
长方形4 11.6 8.4 97.44
长方形5 11 9 99
长方形6 10 10 100
由学生的实际操作得到的近似值已反映出来一个很好的规律。
学生:由操作的过程,同学们作出的长方形形状有“胖”有“瘦”,反映到表中数据为,当长方形的周长一定,它的长逐渐变短,宽随之逐渐变长,面积在逐渐变大。当长与宽一样长时面积最大。
过程感悟:不要把学生逼太紧,不要怕完不成进度,这个过程进行完后,学生对课本设置相关内容就剩下规范解题过程了。学生的理解远比直接先讲教材的例题效果要好的多。
环节四:练一练,体验数学模型
内容:课本例题
目的:体验“数学化”过程,进一步理性地感受上一个环节中得出的结论,培养学生数学思考的严谨性,判断推理的科学性,语言表述的准确性。
例2、一根长为10米的铁丝围成一个长方形。若该长方形的长比宽多1.4米。
(1)此时长方形的长和宽各为多少米?
(2)若该长方形的长比宽多0.8米,此时长方形的长和宽各为多少米?它围成的长方形的面积与(1)相比,有什么变化?
(3)若该长方形的长与宽相等,即围成一个正方形,那么正方形的边长是多少?它围成的长方形的面积与(2)相比,有什么变化?
实际效果:学生掌握很好。课本已有完整的解题过程,留做课后作业。
环节五:课堂小结
1.通过对“我变胖了”的了解,我们知道“锻压前体积=锻压后体积”,“变形前周长等于变形后周长”是解决此类问题的关键。其中也蕴涵了许多变与不变的辨证的思想。
2.遇到较为复杂的实际问题时,我们可以借助表格分析问题中的等量关系,借此列出方程,并进行方程解的检验.
3.学习中要善于将复杂问题简单化、生活化,再由实际背景抽象出数学模型,从而解决实际问题。
环节六:布置作业
《追赶小明》教案 篇6
一、教材分析
(一)教材的地位和作用
本节内容是一元一次方程应用的延伸与拓展,它进一步让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,同时又渗透了函数与不等式的思想,为以后内容学习奠定了必要的数学基础,本节内容具有承上启下的作用。学生能深刻地认识到方程是刻画现实世界有效的数学模型,领悟到“方程”的数学思想方法。总之,本节内容无论在知识上还是在数学思想方法上,都是十分很好的素材,能很好培养学生的探索精神、应用意识以及创新能力。
(二)教材的重难点
本节的重点是探索并掌握列一元一次方程解决实际问题的方法。而方程的建模思想学生还是初步接触,寻找相等关系对学生来说仍相当困难,所以确定“找出已知量与未知量之间的关系,尤其是相等关系”为本节的难点之一,列方程解应用题的最终目标是运用方程的解对客观现实作出合理的解释,这是本节的难点之二。
二、教学目标分析
(一)知识技能目标
1、目标内容
(1)结合生活实际,会在独立思考后与他人合作,结合估算和试探,列出一元一次方程解决本节的三个实际问题,并能解释结果的实际意义及其合理性。
(2)培养学生建立方程模型来分析、解决实际问题的能力以及探索精神、合作意识。
2、目标分析
(1)本节的内容就是通过列方程、解方程来解决实际问题,这是必须掌握的知识,估算与试探的思维方法也很重要,这是发现和解决问题的有效途径。
(2)七年级的学生对数学建模还比较陌生,建模能突出应用数学的意识,而探索精神和合作意识又是课标所大力倡导的,因而必须加强培养学生这方面的能力。
(二)过程目标
1、目标内容
在活动中感受方程思想在数学中的作用,进一步增强应用意识。
2、目标分析
利用方程解决问题是有用的数学方法,学生在前两节的数学活动中,有了一些初步的经验,但是更接近生活,更富有挑战性的问题则需要师生合作,探索解决。
(三)情感目标
1、目标内容
(1)在探索中获得成功的体验,激发学生学习数学的热情,享受与他人合作的乐趣,建立自信心。
(2)通过对实际问题的解决,进一步体会“数学来源于生活,且服务于生活”的辩证思想。
2、目标分析
七年级学生的年龄特征决定了他们好奇心强、思想活跃、求知心切。利用教材培养学生良好的学习习惯、方法和品质,这是落实新课标倡导的教育理念的关键。
三、教材处理与教法分析
本节内容拟定两课时完成,今天说课的内容是第一课时(探究Ⅰ、探究Ⅱ)。根据本节课的特点及七年级学生的心理特征和认知特征,本节课采用探索发现法进行教学,在活动中充分体现学生是学习的主人,教师是学习的组织者、引导者、合作者。本课借助多媒体辅助教学,给学生以直观形象的演示,增强感性认识,增强教学效果。课中以设疑提问、分组活动等方式,激发学生的兴趣,引导学生自主探索与合作交流,主动获得知识。
四、教学过程分析
探究Ⅰ
(一)教学过程流程图
(二)教学过程Ⅰ
(以探究为主线、形式多样化)
1、问题情境
(1)多媒体展示有关盈亏的新闻报道,感受生活实际。
(2)据此生活实例,展示探究Ⅰ,引入新课。
考虑到学生不完全明白“盈利”、“亏损”这样的商业术语,故针对性地播放相关新闻报道,然后引出要探索的.问题Ⅰ。
2、讨论交流
(1)学生结合自己的生活实际,交流对“盈利”、“亏损”含义的理解。
(2)学生交流后,老师提出问题:某件商品的进价是40元,卖出后盈利25%,那么利润是多少?如果卖出后亏损25%,利润又是多少?(利润是负数,是什么意思?)
(3)要求学生对探究Ⅰ中商店的盈亏进行估算,交流讨论并说明理由。在讨论中学生对商店盈亏可能出现不同的观点,因此引导学生用数学方法解决问题,统一认识。
(4)师生互动,要知道究竟是盈是亏,必须先知道什么?从而引出要算出每件衣服的进价。
让学生讨论盈利和亏损的含义,理解其概念,建立感性认识;乍一看,大多数学生可能在大体估算后得到不亏不盈,直觉上也是如此,但要解决实际问题,还要知其原价(未知量),从这一分析引入未知量,为后面建立模型,做了必要的铺垫。
3、建立模型
(1)学生自主探索,寻找已知量与未知量之间的关系,确定相等关系。
(2)学生分组,根据找出的相等关系列出方程,其中一组计算盈利25%的衣服的进价,另一组计算亏损25%的衣服的进价。
(3)师生互动:①两件衣服的进价和为________;②两件衣服的售价和为________;③由于进价________售价,由此可知两件衣服的盈亏情况。
(教师及时给出完整的解答过程)
学生分组、计算盈亏;教师参与、适当提示;师生互动、得到决策。这样设计,让学生体会到合作交流、互相评价、互相尊重的学习方式,有利于学生知识的形成与发展,也有利于学生健康人格的养成。这样设计易于突出重点,突破难点,巩固应用一元一次方程作工具来解决实际问题的方法,也很好地让学生从已有的经验中、活动中,有意义地构建自己的知识结构,获得富有成效的学习体验。
4、小结
一个感悟:估算与主观判断往往与实际情况大相径庭,需要我们通过准确的计算来检验自己的判断。培养学生科学的学习态度与严谨的学习作风。
探究Ⅱ
(三)教学过程Ⅱ
1、在灯具店选购灯具时,由于两种灯具价格、能耗的不同,引起矛盾冲突。
恰当的问题情境激发学生探索的欲望,同时让学生体会到数学来源于生活,又服务于生活的实用性。
启发:选择的目的是节省费用,费用又是由哪些因素决定的?学生讨论得出结论:
2、列代数式
费用=灯的售价+电费
电费=0.5灯的功率(千瓦)照明时间(时)
在此基础上,用t表示照明时间(小时)。要求学生列出代数式表示这两种灯的费用。
节能灯的费用(元):xxx
白炽灯的费用(元):xxx
分析各个量之间的关系,列出代数式,为后面列方程,并进一步探索提供了基础。
3、特值试探具体感知
学生分组计算:
t=1000、2000、2500、3000时,这两种灯具的使用费用,填入下表:xx
学生填完表格后,展示由表格数据制成的条形统计图。
引导学生讨论:从统计图表,你发现了什么?
问题的答案是多样的,师生共同得出:照明时间不同,作出的选择不同。
由于在前面的第二节,学生已经学过“两种移动电话计费方式”的一道例题,因此学生应该能较熟练地完成表格中的特值试探。又因为七年级学生的认知以直观形象为主,再给出统计图,完成特殊到一般,感性到理性的深化。
4、方程建模
观察统计图,你能看出使用时间为多少(小时)时,这两种灯的费用相等吗?
列出方程:xxx
5、合作交流解释拓展
(1)照明时间小于2327小时,用哪种灯省钱?照明时间超过2327小时。但不超过3000小时,用哪种灯省钱?
学生分组讨论,交流各自的看法。
(2)如果计划照明3500小时,则需购买两个灯,设计你认为合理的选灯方案。
学生分组、讨论购灯方案只有三种:
①两盏节能灯;
②两盏白炽灯;
③一盏节能灯、一盏白炽灯。
学生计算各种方案所需费用。
关于选灯方案③,学生可能会有不同的结果,先让学生充分展示他们的计算理由,然后对学生得出“使用节能灯3000小时,白炽灯500小时”的结论,给予充分肯定,并引导学生寻找理论依据,列式验证:
设节能灯的照明时间为t(小时),那么总费用为:
60+3+0.50.011t+0.50.06(3500-t)=168-0.0245t(0≤t≤3000)
观察上式可看出,只有当t=3000时,总费用最低。
培养学生合作交流,倾听他人意见,并从交流中获益的学习习惯,综合各方面信息的能力。讨论2需要考虑的情形不只一种,通过这一问题,培养分类讨论的思想,养成缜密的思维品质。此处渗透着函数、不等式和分类讨论的思想,为后面学习实际问题提供了实践经验。
6、反馈练习
一家游泳馆每年6~8月出售夏季会员证,每张会员证80元,只限本人使用,凭证购入场券每张1元,不凭证购入场券每张3元,讨论并回答:
(1)什么情况下,购会员证与不购证付相同的钱?
(2)什么情况下,购会员证比不购证更合算?
(3)什么情况下,不购会员证比购证更合算?
适时的反馈练习,以加深学生对这一知识的理解,逐步完善自己的知识结构。
(四)教学小结
学生分组小结“本课学到了什么”,各组发言交流体验、教师总结:
五、设计说明
七年级学生的年龄特征决定了他们好奇心强,思想活跃、求知心切。因此我从“以人为本”的理念出发,依据数学的工具性和人文性等特点,在整个教学活动中始终关注学生的发展,培养学生的创新精神与创新能力。
(一)充分尊重学生的主体地位
发挥学生的主体作用,坚持让学生自主探索、合作交流,展示学生的思维过程。
(二)树立方程建模思想
突出解释与应用,渗透函数、不等式、分类讨论等数学思想和方法,培养学生应用数学的意识。
(三)注重对学习过程与方法的评价
关注学生参与数学活动的热情,与他人合作的态度,以及独立地分析问题、解决问题的能力,力争让不同的人在数学上得到不同的发展。
(1)某种商品因换季打折出售,如果按定价的七五折出售将赔25元;而按定价的九折出售将赚20元。问这种商品的定价为多少元?
(2)某商店为了促销A牌高级洗衣机,规定在元旦那天购买该机可以分两期付款,在购买时先付一笔款,余下部分及它的利息(年利率为5、6%)在明年的元旦付清,该洗衣机售价是每台8224元,若两次付款相同,问每次应付款多少元?
(3)工厂甲、乙两车间去年计划共完成税利720万元,结果甲车间完成了计划的115%,乙车间完成了计划的110%,两车间共完成税利812万元,求去年两个车间各超额完成税利多少万元?
(4)一辆汽车用40千米/时的速度由甲地驶向乙地,车行3小时后,因遇雨平均速度被迫每小时减少10千米,结果到达乙地时比预计的时间晚了45分钟,求甲、乙两地间的距离。
(5)甲、乙两人合办一小型服装厂,并协议按照投资额的比例多少分配所得利润,已知甲与乙投资比例为3∶4,第一年共获利30800元,问甲、乙两人可获利润多少元?
(6)有人问老师班级有多少名学生时,老师说:“一半学生在学数学,四分之一学生在学音乐,七分之一的学生在读外语,还剩六名学生在操场踢球。”你知道这个班有多少名学生吗?
(7)某人10时10分离家去赶11时整的火车,已知他家离车站10千米,他离家后先以3千米/时的速度走了5分钟,然后乘公共汽车去车站,问公共汽车每小时至少走多少千米才能不误火车?
综合运用:
1、某市居民生活用电基本价格是每度0.40元,若每月用电量超过a度,超出部分按基本电价的70%收费。
(1)某户五月份用电84度,共交电费30.72元,求a;
(2)若该户六月份的电费平均为每度0.36元,求六月份共用电多少度?应交电费多少元?
2、为了鼓励节约用水,市政府对自来水的收费标准作如下规定:每月每户不超过10吨部分,按0.45元/吨收费;超过10吨而不超过20吨部分,按0.80元/吨收费;超过20吨部分,按1、5元/吨收费。现已知李老师家六月份缴水费14元,问李老师家六月份用水多少吨?
3、一支自行车队进行训练,训练时所有队员都以35千米/时的速度前进。突然,有一名队员以45千米/时的速度独自行进,行进10千米后调转车头,仍以45千米/时的速度往回骑,直到与其他队员会合。你知道这名队员从离队到与队员重新会合,经过了多长时间吗?
4、有8名同学分别乘两辆轿车赶往火车站,其中一辆轿车在距离火车站15千米时出现故障,此时离火车停止检票时间还有42分,这时惟一可以利用的交通工具只有一辆轿车,连司机在内限乘5人,这辆小轿车的平均速度为60千米/时。这8名同学都能赶上火车吗?
5、一家庭(父亲、母亲和孩子们)去某地旅游。甲旅行社说:“如父亲买全票一张,其余人可享受半价优惠。”乙旅行社说:“家庭旅行算集体票,按原价的优惠。”这两家旅行社的原价相同。你知道哪家旅行社更优惠吗?
【《追赶小明》教案】相关文章:
能追上小明吗教案08-10
知错就改的小明12-08
追赶的作文08-06
大班数学教案《小明的家》12-04
知错就改的小明作文07-21
聪明的小明作文03-25
聪明的小明作文08-29
小明钓鱼作文02-24
小明的谎言作文11-13