- 相关推荐
《分数的基本性质》教学设计(通用10篇)
作为一名教学工作者,就不得不需要编写教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。那么大家知道规范的教学设计是怎么写的吗?下面是小编整理的《分数的基本性质》教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
《分数的基本性质》教学设计 1
一、教学目标
1、经历探索分数基本性质的过程,理解分数的基本性质。
2、能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
3、经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
二、 教学重、难点
教学重点是:分数的基本性质。
教学难点是:对分数的基本性质的理解。
三、教学方法
采用了动手做一做、观察、比较、归纳和直观演示的方法
四、教学过程
(一)、故事引入,揭示课题
1、教师讲故事。
猴山上的猴子最喜欢吃猴王做的饼了。有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均切成四块,分给猴1一块。猴2见到说:“太少了,我要两块。”猴王就把第二块饼平均切成八块,分给猴2两块。猴3更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给猴3三块。小朋友,你知道哪只猴子分得多吗?
讨论:哪只猴子分得的多?让学生发表自己的意见,教师出示三块大小一样的饼,通过师生分饼、观察和验证,得出结论:三只猴子分得的饼一样多。
引导:聪明的猴王是用什么办法来满足小猴子们的要求,又分得那么公平的呢?同学们想知道吗?学习了“分数的基本性质”就清楚了。(板书课题)
2、组织讨论。
(1)既然三只猴子分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,14=28=312,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。
(2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?通过观察演示得出:34=68=912。
(3)我们班有40名同学,分成了四组,每组10人。那么第一、二组学生的人数占全班学生人数的几分之几?引导学生用不同的分数表示,然后得出:12=24=2040。
3、引入新课:黑板上三组相等的分数有什么共同的特点?学生回答后板书:
分数的分子和分母变化了,
分数的大小不变。
它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。
( 二)、比较归纳,揭示规律
1、出示思考题。
比较每组分数的分子和分母:
(1)从左往右看,是按照什么规律变化的?
(2)从右往左看,又是按照什么规律变化的?
让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。
2、集体讨论,归纳性质。
(1)从左往右看,由34到68,分子、分母是怎么变化的?引导学生回答出:把34的分子、分母都乘以2,就得到68。原来把单位“1”平均分成4份,表示这样的3份,现在把分的份数和表示份数都扩大2倍,就得到68。
板书:
(2)34是怎样变化成912的呢? 怎么填?学生回答后填空。
(3)引导口述:34的分子、分母都乘以2,得到68,分数的大小不变。
(4)在其它几组分数中,分子、分母的变化规律怎样?几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的大小不变。
(板书:都乘以
相同的数)
(5)从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都除以相同的数,分数的大小不变。
(板书:都除以)
(6)引导思考:都乘以、都除以两个“都”字,去掉一个怎么改?(去掉第二个“都”字,换成“或者”)再对照教科书中的分数基本性质,让学生说出少了什么?(少了“零除外”)讨论:为什么性质中要规定“零除外”?
(板书:零除外)
(7)齐读分数的基本性质。先让学生找出性质中关键的字、词,如“都”、“相同的数”、“零除外”等。然后要求关键的字词要重读。师生共同读出黑板上板书的分数基本性质。
3、出示例2:把12和1024化成分母是12而大小不变的分数。
思考:要把12和1024化成分母是12而大小不变的分数,分子、分母怎么变化?变化的依据是什么?
4、讨论:猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?如果要五块呢?
5、质疑:让学生看看课本和板书,回顾刚才学习的过程,提出疑问和见解,师生答疑。
( 三)、沟通说明,揭示联系
通过举例,沟通分数的基本性质与商不变性质之间的联系。引导学生运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质。
如:34=3÷4=(3×3)÷(4×3)=9÷12=912
( 四)、多层练习,巩固深化
1、口答。(学生口答后,要求说出是怎样想的?)
2、判断对错,并说明理由。(运用反馈片判断,错的要求说明与分数的基本性质中哪几个字不相符。)
教学反思:
学生是学习的主人,教师是数学学习的.组织者、引导者与合作者。因此数学课堂教学中必须把教师的教变成学生的学,必须深入研究学法,建立探究式的学习模式。教师应调动学生的学习积极性,向学生提供充分从事数学学习的机会,帮助他们在自主观察、讨论、合作、探究学习中真正理解和掌握基本的数学知识和技能,充分发挥学生的能动性和创造性。《分数的基本性质》的教学设计一个突出的特点就是学法的设计,从大胆猜想、实验感知、观察讨论到概括总结,完全是为学生自主探究、合作交流的学习而设计的。具体表现在:
1、学生在故事情境中大胆猜想。
通过创设“猴王分饼”的故事,让学生猜测一组三个分数的大小关系,为自主探索研究“分数的基本性质”作必要的铺垫,同时又很好地激发了学生的学习热情。
2、学生在自主探索中科学验证。
在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发学生主动探究的欲望。在探索“分数的基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明自己猜想结论的正确性,突现出课堂教学以学生为本的特性。整个教学过程以“猜想——验证——完善”为主线,每一步教学,都强调学生自主参与,通过规律让学生自主发现、方法让学生自主寻找、思路让学生自主探索,问题让学生自主解决,使学生获得成功的体验,增强自信心。
3、让学生在分层练习中巩固深化。
在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,有坡度。第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题通过游戏,加深学生对分数的基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。这样不仅能照顾到学生思维发展的过程,而且有效拓宽了学生的思维空间,真正做到了学以致用。
反思教学的主要过程,觉得在让学生用各种方法验证结论的正确性的时候,拓展得不够,要放开手让学生寻找多种途径去验证,而不能局限于老师提供的几种方法。因为数学教学并不是要求教师教给学生问题的答案,而是教给学生思维的方法。
《分数的基本性质》教学设计 2
教学目标:
知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小不变的分数;培养学生观察比较、抽象概括及动手实践的能力,进一步发展学生的思维。
过程与方法:
经历探究分数基本性质的过程,感受“变与不变”,“转化”等数学思想方法。情感态度与价值观:激发学生积极主动的情感状态,养成注意倾听的习惯,体验互助合作的乐趣。
教学重点:
理解和掌握分数的基本性质,会运用分数的基本性质。
教学难点:
自主探究出分数的基本性质
教学准备:
PPT课件、每小组准备三个同样大小的圆形纸片、三张完全一样的长方形(正方形)纸、直尺、彩笔等。
教学流程:
一、故事导入激趣引思
引言:细心的同学一定听出来了,刚刚老师播放的是哪部动画片的主题歌?对,我们今天的学习就从西游记的故事说起。
讲故事:话说唐僧师徒四人去西天取经,一路上历经磨难。一天,他们走得又累又饿,幸好路过一个村庄,化缘得到三块同样大小的饼。唐僧心想:三块饼,四个人不太好分呀!但是很快他就想到了一个分饼的方案,他对徒弟们说:我准备将第一块饼,平均分成2份,八戒吃其中的二分之一;将第二块饼平均分成4份,沙和尚吃其中的四分之二;将第三块饼平均分成8份,悟空吃其中的八分之四,你们同意这样的分配方案吗?师父的话音未落,猪八戒便跳出来说:“我不同意这样的分法,师父你太偏心了,凭什么猴哥吃那么多有八分之四,而我却吃那么少才二分之一。同学们,请你们判断一下,猪八戒说的对吗,师父真的偏心吗?
生发表见解。
二、自主合作探索规律
1、反馈引导:1/2=2/4=4/8。“三个徒弟分得的饼一样多---等式---仔细瞧瞧这组分数等式的分子分母相同么?但是它们的大小却?再用变化的眼光瞧瞧,(师画正反向两箭头)我们发现分数的分子分母改变了,什么却没有变?师贴板帖分数可真与众不同呵!
2、提出探究任务:那如果我让们动手做或者联系生活实际想,像这样大小相等的分数,只有一组吗?你们能不能找出一些给老师看看?找之前请位同学为我们读一读小组合作学习要求:
(1)每个小组找出一组大小相等的分数,并想办法证明这组分数大小相等。
(2)思考:在写分数的过程中你们发现了什么规律?
组内商量一下然后开始行动!
3、小组研究教师巡视
4、全班汇报
交流评价(教师相机板书)圆纸片汇报长方形纸汇报正方形纸汇报及联系一组人数说发现规律把每组数从左往右或者从右向左仔细观察你能发现分子分母的怎样的`变化规律?(可以举例说演绎推理深入)随机更换贴图
板书课题:分数的基本性质打出幻灯
5、反思规律看书对照找出关键词要求重读共同读
6、引证规律:3/4=12/16刚刚动手做我们验证了这组大小相等的分数的正确性并由此发现了分数的基本性质那你能否利用分数与除法的关系以及整数除法中商不变性质,再一次说明分数的基本性质。
三、自学例题运用规律
过渡:同学们刚刚的精彩表现展示出了你们强大的学习能力,所以在接下来的一段时间里,老师请你们自学课本96页的例2并完成相应“练一练”。现在开始生自学
集体评议:例2练一练1和2,请说说你的根据和想法!重点让学生说说根据什么,分母、分子是如何变化的。
四、多层练习巩固深化
1、判断对错并说明理由
2/9=8/36,4/9=2/3,3/4=3a/4a,5/10=3/6,1/5=4/8
2、把6/20,70/100,45/50,1/2,4/5化成分母相同而大小不变的分数
思考:分数的分母相同,能有什么作用?
3、圈分数游戏圈出与1/2相等的分数
4、对对碰与1/2,2/3,3/4生生组组师生互动
五、课堂小结课堂作业
结语:你看,运用数学知识玩游戏,也是乐趣无穷。这节课我们就上到这儿,
作业:余下来的时间请完成课本97页练习十八的1-3题,做在书上。
《分数的基本性质》教学设计 3
教学内容:
人教版小学数学第十册第107页至108页。
教学目标:
1、分数的基本性质包括分子和分母的关系,分子代表分数的份数,分母代表每份的份数。分数的大小取决于分子和分母的比例关系,分子越大,分数越大;分母越大,分数越小。我们可以通过改变分数的分子和分母,使分数的大小保持不变。
2、能力目标:培养学生的观察能力、动手操作能力和分析概括能力等。
3、情感目标:让学生在学习过程中养成互相帮助、团结协作的良好品德。
教学准备:
长方形纸片、彩笔、各种分数卡片。
教学过程:
一、创设情境,激发兴趣
同学们,今天是个特别的日子,老师祝大家节日快乐!在我们庆祝自己的节日的同时,花果山圣地也洋溢着节日的喜庆气氛。让我们一起共同享受这美好的时刻吧!
【六一节到了,猴山上张灯结彩,小猴们享受着节日的快乐。猴王给小猴们做了三块他们爱吃的饼。它先把第一块饼平均切成四块,分给第一只小猴贝贝一块。第二只小猴佳佳见到说:“太小了,我要两块。”猴王就把第二块饼平均切成八块,分给第二只小猴两块。第三只小猴丁丁急了,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给第三只小猴丁丁三块。贝贝、佳佳见了,连忙说:“猴爷爷,不公平,不公平,我们要分得和丁丁的同样多。”】
“同学们,猴王真的分得不公平吗?”
二、动手操作、导入新课
同学们,好的,让我们一起来分一分。在这个故事中,猴王将香蕉分成了三份,每份都是一样的。这告诉我们公平是很重要的,每个人都应该得到公平的待遇。我们在日常生活中也要学会公平地对待他人,尊重他人的权利和利益。现在,请每组拿出课前准备的三张长方形纸片,共同来分一分,并完成操作报告。请小组长分工一下,明确记录的同学。完成后,请上传操作报告。
任选一小组的同学台前展示实验报告,并 汇报 结论。
教师根据学生 汇报 板书:14=28=312
2.组织讨论。
(1)通过操作我们发现三只猴子分得的饼同样多,表示它们分得饼的分数是相等关系。那么,这三个分数什么变了,什么没有变?让学生小组讨论后答出:它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。
(2)猴王把三块大小一样的香蕉分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的数量吗?观察演示得出结论,教师板书:2=4=6。
3.引入新课:
我们今天来探讨黑板上两组相等的分数有什么共同的特点。同学们,观察一下黑板上的两组分数,它们看起来不同,但却有一个共同之处:无论分子和分母如何变化,这两组分数的大小始终保持不变。这让我们思考一个问题:这些分数的分子和分母之间是否存在某种规律呢?让我们一起来探讨这个变化规律。
三、比较归纳,揭示规律。
好的,让我们一起来探究一组相等分数。请你们选择黑板上的任意一组相等分数,然后共同讨论、探究,并完成探究报告。探究报告请写在纸上,准备好后我来收取。祝你们成功!
1.课件出示探究报告。
2.分组汇报,归纳性质。
(1)学生们根据探究报告观察到,在这个数列中,分子和分母的变化规律是分子每次递增1,分母每次递减2。接下来让我们选择一组学生到黑板上边说边用箭头表示出分子和分母的变化过程。
(根据学生回答板书:同时乘上 相同的数)
(2)从右往左看,分数的分子和分母又是按照什么规律变化的?
(根据学生的回答板书:除以 )
(3)有与这一组探究的分数不一样的吗?你们得出的规律是什么?
(4)综合刚才的探究,你发现什么规律?
根据学生的回答,揭示课题,(……这叫做板书:分数的基本性质)
对这句话你还有什么要补充的?(补充“零除外”)
讨论:为什么性质中要规定“零除外”?
(红笔板书:零除外)
(5)分数的基本性质包括相同分母(或相同分子)的分数可以比较大小,相同分母的分数相加(或相减)时保持分母不变,相同分子的分数相加(或相减)时保持分子不变,分数乘除法时分子相乘(或分子相除)、分母相乘(或分母相除)。在这些基本性质中,需要提醒大家注意的是:分数的乘法和除法运算时,一定要将分数化简至最简形式,即分子与分母互质,避免出现不必要的误解和计算错误。例如,$frac{4}{6} imes frac{3}{4} = frac{1}{2}$,而不是$frac{3}{6}$或$frac{4}{4}$。
师生共同读出黑板上板书的分数基本性质(要求关键的字词要重读)。
3、智慧眼(下列的式子是否正确?为什么?)
(1)35=3×25=65 (生:35的分子与分母没有同时乘以2,分数的大小改变。)
(2)512=5÷512÷6=12 (生:512的`分子除以5,分母除以6,除数的大小不同,分数的大小也不同)
(3)112=1×312÷3=34 (生:112的分子乘以3,而分母除以3,没有同时乘以或除以,分数的大小不相等。)
(4)25=2×x5×x=2x5x (生:x在这里代表任何数,当x=0时,分数的大小改变。)
4、猴王分饼的规律是每次将饼分成若干块,然后让小猴子选择一块,猴王自己取走剩下的块数。这样可以确保每次分配都是公平的。如果小猴子要四块,猴王可以将饼分成5块,让小猴子选择其中的1块,那么猴王自己就可以取走剩下的4块,这样分配是公平的。如果小猴子要五块,猴王可以将饼分成6块,让小猴子选择其中的1块,那么猴王自己就可以取走剩下的5块,这样分配也是公平的。
三、回归书本,探源获知
1、浏览课本第107—108页的内容。
2、看了书,你又有什么收获?还有什么疑问吗?
3、师生答疑。
你会运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质吗?
4、自主学习并完成例2,请二名学生说出思路。
《分数的基本性质》教学设计 4
教学目标:
结合趣味故事经历认识分数的基本性质的过程。
初步理解分数的基本性质,会应用分数的基本性质进行分数的改写。
经历观察、操作和讨论等学习活动,体验数学学习的乐趣
教学重点:
理解掌握分数的基本性质。
教学难点:
归纳分数的性质。
学生准备:
长方形纸片。
一、创设故事情境,激发学生学习兴趣并揭示课题。
唐僧师徒四人在路上遇到了一个巨大的西瓜,大家决定平均分成四块。孙悟空机智地将西瓜切成四块,但猪八戒贪吃,偷偷吃了一块。接着,大家又把西瓜平均分成八块,这次猪八戒更加贪吃,吃掉了其中的两块。最后,西瓜被分成了十六块,猪八戒再次偷偷吃了四块。通过这个故事,让学生在实践中体会到分数的基本性质,引发他们对数学的探究兴趣。看完故事后,可以向学生提问:你从这个故事中了解到了哪些数学信息?你想到了什么问题?
让我们来讨论八戒没有多吃到饼的事情。我们可以通过折一折、分一分、比一比的方式来说明。让我们亲自动手操作,将一块饼折成三份,然后比较八戒吃了一份之后,剩下的两份和原来的一块饼是相等的。尽管分子和分母不同,但这两个分数是相等的,这是为什么呢?让我们通过课件直观感受这个规律,揭示其中的奥秘。
二、小组合作,探究新知:
1、动手操作、形象感知
出示课件,让学生观察讨论图中分数的涂色部分是多少?
A、谈话:请同学们拿出课前准备好的一张正方形的纸,你能先对折,并涂出它的1/4吗?
B、追问:你能通过继续对折,每次找一个和1/4相等的其他分数吗?
C、好的,我来修改一下:学生们可以尝试将一张正方形纸张对折多次,每次对折后,正方形被平均分成了几份?涂色部分又有几份呢?可以让不同的同学展示不同的对折方法,看看他们得到的结果有何不同。同时,大家可以思考一下:涂色的部分可以用什么分数来表示?这个分数与1/4是否相等呢?
2、观察比较、探究规律
(1)通过动手操作,你认为它们谁大?请到展示台上一边演示一边讲一讲。
(2既然这三个分数相等,那么我们可以用什么符号把它们连接起来?
(3)这三个分数的分子、分母都不相同,但它们的大小却相等。你们能找出它们之间的变化规律吗?请同学们四人为一组,讨论这两个问题。
(4)通过从左到右的观察、比较、分析,你发现了什么?
使学生认识到这四个正方形同样大,虽然平均分的份数不一样,但阴影部分的面积相等,四个分数也相等。课件出示连等式子。
【通过展示不同的对折方法,使学生体会解决问题方法的多样性,拓展学生的思维。】
3引导观察:请大家观察每个等式中的两个分数,它们的分子、分母是怎样变化的?
观察思考后。在课文上填空,再在小组内交流。然后教师再集中指导观察:
从左往右看:将1/4扩大4倍,得到2/8;分子和分母同时乘以2,得到4/16。变化规律是分子和分母同时扩大相同的倍数。从右往左看:将4/16缩小为1/4,将2/8缩小为1/4。变化规律是分子和分母同时缩小到最简形式。
4、归纳规律
提问:综合以上两种变化情况,谁能用一句话概括出其中的规律?
当我们将分数的分子和分母同时乘或除以相同的数(0除外),分数的值不会改变,这是分数的基本性质。
6、小结
同学们在这节课的学习中表现得很出色,说一说你有什么收获或体会?
【通过小结,同学们,今天我们学习了关于圆的周长和面积的知识。通过课堂学习,我们了解到了如何计算圆的周长和面积,并且掌握了相应的计算方法。在课堂练习中,大家也积极参与,对这些知识有了更深入的`理解。接下来,我们可以继续拓展这个主题,比如探究圆与其他图形的关系,或者深入了解圆的性质和应用。希望同学们能保持学习的热情,积极探索更多有关圆的知识。下节课我们将继续深入学习,一起探究更多有趣的数学知识。期待在下节课与大家再次相见!
四、巩固强化,拓展应用
多样的练习可以让学生及时巩固所学知识,又调动了学生学习的积极性。
五、游戏找朋友。
六、布置作业:
在备课之前,精心设计课堂内容和教学思路,准备好所需教具。课前,可以通过一些活动来活跃课堂气氛。通常情况下,课堂使用黑板为主,但也可以偶尔利用多媒体设备进行教学。学生们对此都很感兴趣,特别是在创设情景的时候,他们会很投入。随后的动手操作环节也很重要。不过学生们可能会在表达方面有所保留,不太敢大胆发言。他们对问题的回答可能不够清晰。在引导学生主动探索、逐步获取规律的过程中,教师起到了重要的作用。最后,通过学生们一一解答并归纳分数性质,如从左到右分子分母都变大但分数大小不变,从右到左分子分母都变小但分数大小不变,让学生掌握了这些规律。教师强调让学生记住分数的性质关键词,如“都”、“乘以或除以”、“相同的数”、“零除外”,并通过多层次的巩固练习加深他们的理解。最后,通过愉快的找朋友游戏让学生轻松地应用所学知识。
《分数的基本性质》教学设计 5
教学目标:
1、经历探索分数基本性质的过程,理解分数的基本性质。
2、能运用分数基本性质,把一个数化成指定分母(或分子)大小不变的分数。
3、经历观察、操作和讨论等数学活动,体验数学学习的乐趣及数学与日常生活密切联系。
教学重点:
运用分数的基本性质,把一个数化成指定分母(或分子)而大小不变的分数。
教学难点:
联系分数与除法的关系,理解分数的基本性质,沟通知识间的联系。
教学准备:
多媒体课件 长方形白纸、圆片,彩色笔等。
教学过程:
一、 创设情境,激趣导入
师:同学们,新的学期到来了,你们刚入校园时觉得我们学校都发生了哪些变化,(换了新课桌,有了新的洗手间,有了文化走廊,有了开心农场),说到开心农场,还有一个小故事,开学初,校长决定把这块地的三分之一分给四年级,六分之二分给五年级,九分之三分给六年级,四年级同学认为校长不公平,分给六年级的同学多而分给他们的少,校长听了,笑了,谁能根据自己的预习告诉老师校长笑什么?
生1:四、五、六年级分的地一样多。
生2:……
师:到底校长分的公平不公平,我们来做个实验吧?
二、动手操作,探究新知
1、小组合作,实验探究。
师:请同学们拿出你们准备好的学具,按平时的分组习惯四人一组,用你们的学具来代替这块地,像校长一样来分地吧。
2、汇报结果
师生交流:你们是怎样做的?谁能说一说,请几个同学上台演示并口述演示过程。
生1:用三张同样的长方形的纸来代替这块地,分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。
生2:用三个同样的圆片分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。
生3:用三条线段分别画出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。
生4:把分数化成小数,他们的商也一样,所以三块地的面积一样大 。
生5:……
3、课件展示,得出结论。师:校长分的和你们一样吗?我们再来看看小电脑是如何拼的,(利用优质资源课件演示分地的过程,师生共同观察总结得到校长分的地一样多。)
(设计意图:这样设计的目的是为了更有利于学生主体个性的发挥,在探究活动中充分发挥学生的个体的潜能,给学生足够的时间和想象的空间,进行小组合作式的探究活动,让学生自由的猜想,使实验成为自己的需要,同时让学生思考用什么方法验证,使学生带着浓浓的兴趣进入探究新的学习活动之中。)
4、探索分数的基本性质。
师:三个年级分的地一样多,那么你们觉得、 这三个分数的大小怎么样?
生:相等。
师:同学们请看这组分数有什么特点?(板书 =)
生:分数的分子分母发生了变化分数的大小不变。
师:请同学们从左往右仔细观察,第一个分数和第二个分数相比分子分母发生了什么变化?第一个和第二个,第二个和第三个呢?
生:分子分母同时乘2,……
师:谁能用一句换来描述一下这个规律?
生:给分数的分子分母同时乘相同的数。(师随着板书)
师:同学们在反过来从右往左观察,分数的分子、分母有什么变化规律?
生:分数的分子分母同时除以相同的数。
师:像这样给分数的分子分母同时乘或(除以)相同的数,分数的大小不变。就是我们这节课学习的新知识。(板书 分数的基本性质)。
师:结合我们的预习,对于分数的基本性质同学们还有什么不同的意见?
生:0除外。
师:为什么0要除外?
生:因为分数的分母不能为0.
师:(补充板书0除外)在分数的基本性质中,那几个词比较重要?
生:同时 相同 0除外
师:(把这三个词用红笔加重)同学们有没有发现分数的基本性质和谁比较相似?
生:商不变的'性质。
师:为什么?
生:我们学过分数与除法的关系,被除数相当于分子,除数相当于分母,所以他们是相通的。
师:数学知识中有许多知识如像商不变性质与分数的基本性质是一致的。因此平时学习中我们要触类旁通,灵活运用,才会举一反三。
三、应用新知,练习巩固。
(一) 练一练
(二)摸球游戏。老师手中有一个箱子,里面装有许多水果,水果上面写着不同的分数,如果你摸到一个水果,说出一个与它大小相等,而分子分母不同的新分数,这个水果就奖励给你。
(二) 判断(抢答)
1、 分数的分子、分母都乘过或除以相同的数分数的大小不变。( )
2、 把的分子缩小5倍,分母也缩小5倍分数的大小不变。( )
3、 给分数的分子加上4,要是分数的大小,分母也要加上4。( )
(四)测一测
1、把和都化成分母是10而大小不变的分数。
2、把和都化成分子是4而大小不变的分数。
3、的分子增加2,要是分数大小不变,分母应增加几?
四、总结。
1、这节课大家表现的都很棒,谁能说说你这节课你都知道哪些知识?
2、把板书最后补充成一条鱼,希望大家拥有一双明亮的眼睛,肚子里装满知识,在知识的海洋里遨游。(完成板书)
五、作业
练习册2、4题
板书设计:
分数的基本性质
给分数的分子分母同时乘或除以相同的数(0除外)分数的大小不变。
《分数的基本性质》教学设计 6
【教学目标】
1.理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2.根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数。
3.培养学生观察、分析和抽象概括的能力。
【教学重点】
理解分数的基本性质。
【教学难点】
发现和归纳分数的基本性质,并能应用它解决相关的问题。
【教学过程】
一、复习引入
1.看算式快速得出结果。
15 ÷ 3=
150 ÷ 30=
1500÷ 300=
师:这三个算式有什么特点?谁能说说这就是我们四年级学过的什么性质?(商不变性质)
2.复习商不变性质。
师:什么是商不变性质呢?(在除法里,被除数和除数同时扩大或者缩小相同的'倍数,商不变。或者说,被除数和除数同时乘以或者除以相同的数,零除外,商不变。)
二、新授课
1.通过探索,发现规律
师:老师这里有3张同样大小的正方形纸,这里,我们将它们平均分,分别涂上不同颜色,你能用分数把它们表示出来吗?自己拿出学具(三张小正方形纸和彩笔)试一试。
学生自己完成任务。
师:看看这三个图,你发现了什么?(涂色的面积一样大)通过图上看起来,这三个分数是什么关系?(相等的)
师:我们仔细观察这一组分数,它的什么变了,什么没变?(引导学生观察分数的分子分母变化关系,让学生自己说出其中的变化。)
师:刚才大家都观察得很仔细,这组分数的分子分母都不同,它们的大小却一样,那么,分子分母发生怎样变化的时候,它的大小不变呢?同桌之间互相说一说,总结一下,好吗?
师总结:像分数的分子分母发生的这种有规律的变化,就是我们这节课学习的新知识--分数的基本性质。
2.深入理解分数的基本性质。
师:什么叫做分数的基本性质呢?就你的理解,用自己的语言说一说。(学生讨论后发言)
师:刚才同学们都用自己的语言说了分数的基本性质,我们的书上也总结了分数的基本性质:
师:想一想为什么要加上"零除外"?不加行不行?我们前面学过什么定律也有这个"零除外"?(让学生结合以前学过的商不变的性质讨论,为什么加"零除外"。)
教师小结:以三分之一这个分数为例,它的分子分母同时除以零,行吗?不行,除数为零没意义。所以零要除外。同时乘以零呢?我们就会发现,分子分母都为零了,而分数与除法的关系里,分母又相当于除数,这样的话,除数又为零了,无意义。所以一定要加上零除外。
三、应用
1.学了分数的基本性质到底又什么用呢?老师告诉你们,根据分数的基本性质,我们就能把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来练习一下。
2.学生练习课本例题2,两名学生在黑板上做。
3.学生自己小结方法。
4.按规律写出一组相等的分数。
四、总结
这节课大家有什么收获?
《分数的基本性质》教学设计 7
教学要求
①分数是表示部分的数,由分子和分母组成。分数的基本性质包括:分子表示分数的部分数量,分母表示每个部分的总数量;分母不为0,分数为有意义的数;分数可以化简为最简形式,即分子和分母没有公约数;分数可以相互比较大小,可以进行加减乘除运算。当我们需要将不同分母的分数化为分母相同的分数时,可以采用找到这些分母的最小公倍数作为新的分母,然后通过乘以适当的倍数,将分数化为分母相同而大小不变的分数。
②培养学生观察、分析和抽象概括能力。
③渗透“事物之间是相互联系”的辩证唯物主义观点。
教学重点
理解分数的基本性质。
教学用具
每位学生准备三张同样的长方形纸条;教师:纸条、投影片等。
教学过程
一、创设情境
1.120÷30的商是多少?被除数和除数都扩大3倍,商是多少?被除数和除数都缩小10倍呢?
2.说一说:
(1)商不变的性质是什么?
(2)分数与除法的关系是什么?
3.填空。
1÷2=(1×2)÷(2×2)==。
二、揭示课题
在分数运算中,我们可以猜测是否存在一种性质,类似于除法中的商不变性质。也就是说,当我们将一个分数乘以一个相同的数值时,分子和分母是否会同时乘以这个数值呢?这种性质是否存在呢?让我们一起来探索吧!
随着学生的回答,教师板书课题:分数的基本性质。
三、探索研究
1.动手操作,验证性质。
(1)请拿出三张同样大小的长方形纸条,将它们分别平均分成2份、4份、6份,并分别涂上不同的颜色。然后用分数表示每张纸条上被涂色部分所占的比例。
(2)观察比较后引导学生得出:==
(3)从左往右看:==
由变成,平均分的份数和表示的份数有什么变化?
把平均分的份数和表示的份数都乘以2,就得到,即==(板书)。
把平均分的份数和表示的份数都乘以3,就得到,即:==(板书)。
引导学生初步小结得出:分数的分子、分母同时乘以相同的数,分数的大小不变。
(4)从右往左看:==
引导学生观察明确:的分子、分母同时除以2,得到。同理,的分子、分母同时除以3,也可以得到。
让学生再次归纳:分数的分子、分母同时除以相同的数,分数的大小不变。
(5)引导学生概括出分数的基本性质,并与前面的猜想相回应。
(6)提问:这里的“相同的数“,是不是任何数都可以呢?(补充板书:零除外)
2.分数的.基本性质与商不变的性质的比较。
在除法里有商不变的性质,在分数里有分数的基本性质。
想一想:根据分数与除法的关系以及整数除法中商不变的性质,你能说明分数的基本性质吗?
3.学习把分数化成指定分母而大小不变的分数。
(1)出示例2,帮助学生理解题意。
(2)启发:要把和化成分母是12而大小不变的分数,分子应该怎样变化?变化的根据是什么?
(3)让学生在书上填空,请一名学生口答。
4.练习。教材第108页的做一做。
四、课堂实践。
练习二十三的1、3题。
五、课堂小结
1.这节课我们学习了什么内容?
2.什么是分数的基本性质?
六、课堂作业
练习二十三的第2题。
七、思考练习
练习二十三的第10题。
教学反思:
“分数的基本性质”是本学期数学课程的一个重要内容。通过学习分数的基本性质,可以帮助我们更好地理解分数的概念,掌握约分和通分的方法,为以后学习比和解决实际生活中的问题奠定基础。在本节课中,我们将采用猜想和验证的方法,让同学们有足够的时间去探索、思考,从中体会数学的乐趣和魅力。通过这种探究式的学习,不仅能够掌握知识,更能培养同学们的创新意识和解决问题的能力,让他们学会用数学的思维方式去应对未来生活中的挑战。这也是我们培养学生综合素质的重要途径。
这节课是在学生已经熟悉了商不变的性质后,并且在实际应用中有一定经验的基础上进行的。我设计教学的方式是通过举一些实际生活中的例子来引导学生理解商不变的概念,并帮助他们更深入地应用这一概念解决问题。
1、商不变的性质是除法中的重要规律,它告诉我们在同一个除法算式中,被除数与商的乘积始终等于除数与余数的乘积。通过商不变的性质,我们可以发现除数、被除数、商和余数之间的关系。现在让我们尝试根据商不变的性质,思考分数的基本性质是什么?请大胆猜想并说出你的想法。
2、充分发挥学生主体作用,引导学生自主探究。让学生通过折纸游戏,操作、观察、比较,验证自己的猜想。涂色部分可用不同的分数表示,从而培养学生的动手能力,以及观察问题、解决问题的能力。
3、为了将知识转化为能力,我们设计了一系列练习,旨在帮助学生掌握分数的基本性质。这些练习具有典型性、多样性、深刻性和灵活性。首先,我们总结了分数的基本性质,然后进行了基础练习,以加深学生对这些性质的理解。在学习完整个知识点后,我们提供了综合练习,旨在巩固和提高学生的能力。通过应用和拓展,我们希望学生不仅能够加深对分数基本性质的理解,还能培养解决实际问题的能力。
4、0除外的环节设计。在学生归纳出分数的基不性质后,缺少0除外这个难点,我设计了判断一个分数的分子和分母同时乘0,让学生通过练习,马上想到0不能做除数,在分数中分母不能为0,引出:分子和分母同时乘或除以相同的数,必须0除外,突破难点。
《分数的基本性质》教学设计 8
教学目标:
1.理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。
2.理解和掌握分数的基本性质。
3.较好的实现知识教育与思想教育的有效结合。
教学重点:
理解和掌握分数的基本性质。
教学难点:
能熟练、灵活地运用分数的基本性质。
教学过程:
一、创设情景
师:同学们,为了让你们了解到更多的科技知识,在科技周活动中,学校做了三块科普展板(投影出示教材中的三块展板)。同学们认真观察,你们能提出什么问题?
师:猜想对解决问题很重要,它们到底相不相等?下面以小组为单位,想办法来验证一下。
二、新授
师:同学们想了很多好的方法,哪个小组愿意汇报一下?
生1:我们组是用画图的方法来验证的。我们先画了三个大小一样的.正方形表示三块展板,把它们分别平均分成2份、4份和8份,再分别去其中的1份、2份和4份涂上颜色(展示学生画的图)。通过比较我们发现,涂色部分的大小是相等的,所以
生2:我们组是用折纸的方法来验证的。我们先取了三根同样长的纸条,通过对折把它们分别平均分成2份、4份和8份,分别涂色表示(展示学生的折纸情况)。通过折纸我们组也发现(学生在小组中讨论、验证)
师:我们发现的这个规律,就是分数的基本性质。
同学们现在小组内总结一下,什么是分数的基本性质?
(学生认真讨论)
师:同学们汇报一下你们的讨论结果。
三、 自主练习 巩固提高
课本第80页1、2、3、题。
其中,第1题引导学生通过涂色和比较,加深对分数基本性质的直观感受。
第2题二生爬黑板板演,第3、4 题学生自做。师巡视指导。
课堂小结 :
一生小结,他生补充,教师评判。
《分数的基本性质》教学设计 9
教学内容:
教科书第60~61页,例1、例2、练一练,练习十一第1~3题。
教学目标:
1、使学生经历探索分数基本性质的过程,初步理解分数的基本性质。
2、使学生能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。
3、使学生在观察、操作、思考和交流等活动中,培养分析、综合和抽象,概括的能力,体现数学学习的乐趣。
教学重点:
让学生在探索中理解分数的基本性质。
教学过程:
一、导入新课
1、我们已经学习了分数的有关知识,这节课在已经掌握的知识基础上继续学习。
2、出示例1图。
你能看图写出哪些分数?你是怎样想的?说出自己的想法。
二、教学新课
1、教学例1。
(1)这四个分数,为什么分母不同呢?前两个分数的分子为什么都是1?
(2)你其中哪几个分数是相等的吗?你是怎么知道这三个分数相等的?
(3)演示验证。
2、教学例2。
(1)取出正方形纸,先对折,用涂色部分表示它的1/2。学生操作活动。
(2)你能通过继续对折,找出和1/2相等的其它分数吗?学生操作活动。交流汇报。对折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分数表示?(板书)
(3)得到的这些分数与1/2相等吗?能不能再写一些与1/2相等的数?
(4)观察每个等式中的两个分数,它们的分子、分母是怎样变化的?观察、思考,试着完成填空。在小组中说说你有什么发现?
(5)小结。分数的分子和分母同时乘或除以相同的数(0除外),分数的.大小不变,这是分数的基本性质。板书课题:分数的基本性质。
(6)为什么要“0”除外呢?
(7)你能根据分数的基本性质,写出一组相等的分数吗?学生尝试完成。
(8)根据分数和除法的关系,你能用整数除法中商不变的规律来说明分数的基本性质吗?在小组中说一说。
3、完成练一练。
(1)完成第1题。涂色表示已知分数,再在右图中涂出相等部分。说说怎么想的?
(2)完成第1题。独立完成,汇报想法。5到15乘了几?1怎么办?先看哪个数?(分子9)9到1除以几?分母18怎么办?
三、巩固练习
1、完成练习十一第1题。平均分成了多少份?表示多少份?涂色表示。涂色部分还表示几分之几?
2、完成第2题。独立完成,交流想法。
四、课题总结
今天有了什么收获?你认为学习了分数的基本性质有什么作用?在什么时候可能会用到它?
《分数的基本性质》教学设计 10
教学目标
1、经历探索相等分数的分子、分母变化规律的过程,使学生理解分数的基本性质。
2、能运用分数的基本性质把一个分数化成指定分母而大小不变的分数。
3、培养学生观察、分析和抽象概括的能力。
教学重点
理解分数的基本性质
教学难点
发现和归纳分数的基本性质,并能应用它解决相关的问题。
教学过程
一、复习导入
1、说说下面各分数的.含义、分数单位及它有几个这样的分数单位。
2、口算
120÷30=
40÷5=
12÷3=
400÷50=
师:观察两组算式,说说你发现了什么?是我们已经学过的除法的什么性质呢?
在除法运算中,被除数和除数同时乘或除以同一个非零数时,商不会改变,这就是除法的商不变性质。
师:除法和分数有什么关系呢?
板书课题:分数的基本性质
二、新授
师:阿凡提同学都熟悉吧?今天老师带来一个有关阿凡提的数学小故事,跟同学分享一下:
有一个农夫爷爷,他有三头同样健壮的牛,要分给他的三个儿子。老大分到第一头牛的一半,老二分到第二头牛的四分之二,老三分到第三头牛的八分之四。老二听了,觉得自己很吃亏,于是三兄弟大吵起来。正巧经过的智者阿凡提问清争吵原因后,他想了想,然后跟他们说了几句话。三兄弟听后恍然大悟,停止了争吵。
同学们,你们知道阿凡提跟三兄弟讲了什么吗?
生自由发挥。
师:这里有三张同样大小的正方形纸,分别代表着地主爷爷家的三块地。我们一起来看看三兄弟分到的地。你能用分数来表示吗?(出示三张纸)
师:通过观察,可知,三兄弟分到的地同样多。那这三个分数是什么关系呢?
生:相等
师:请观察这三个分数的分子和分母,它们之间存在一种规律。经过仔细观察可以发现,这三个分数的分子和分母在每个分数中都是互换位置的。也就是说,第一个分数的分子和分母交换位置后得到第二个分数,第二个分数的分子和分母再次交换位置后得到第三个分数。这种规律使得这三个分数的大小相等,但分子和分母各不相同。
(预设)生1:分子、分母同时扩大2倍。
生2:分子、分母同时扩大4倍。
师:那从右往左看呢?
总结规律:分数的基本性质是指分数中的分子和分母同时乘或除以相同的数(除数不能为0),分数的大小不变。这一性质可以帮助我们简化分数,使得计算更加方便和简便。
师:和除法商不变的性质对比观察,你有什么发现?
三、分数基本性质的运用
把和化成分母是12而大小不变的分数。
四、巩固练习
五、课堂总结
【《分数的基本性质》教学设计】相关文章:
分数的基本性质教学设计03-28
《分数的基本性质》教学设计(通用6篇)01-14
《分数的基本性质》教学反思04-06
分数的基本性质教学反思04-28
分数的基本性质教学反思04-28
分数的基本性质教案01-20
《分数的基本性质》教案04-25
《分数的基本性质》教学反思(精选15篇)06-05
《分数的基本性质》教案设计(通用10篇)01-07