平行四边形的判定教学设计

时间:2025-01-20 11:25:20 海洁 教案 我要投稿
  • 相关推荐

平行四边形的判定教学设计(精选14篇)

  作为一名为他人授业解惑的教育工作者,常常要写一份优秀的教学设计,教学设计是一个系统化规划教学系统的过程。教学设计应该怎么写才好呢?下面是小编帮大家整理的平行四边形的判定教学设计,希望对大家有所帮助。

平行四边形的判定教学设计(精选14篇)

  平行四边形的判定教学设计 1

  教学目标:

  [知识技能]:

  1.探索平行四边形的判别条件:一组对边平行且相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.

  2.掌握应用上面两种判别方法对一些平行四边形的判别进行说理.

  [过程目标]:

  经历平行四边形判别条件的探索过程。在有关活动中发展学生的合情推理意识。使学生初步掌握说理的基本方法。

  [情感态度目标]:

  通过平行四边形判别条件的探索,培养学生参与意识,鼓励学生大胆尝试,从中获得成功的`体验,激发学生的学习热情。

  教学重点:

  探索平行四边形的两种判别方法

  教学难点:

  学生合情说理的意识及能力

  教学策略与学法指导:

  [教学策略]:

  本节课采用“创设情境,引导探究——动手操作,建立模型——解释应用,深化认知——小结反馈,培养习惯——布置作业,提高能力”等五个环节组成的五步探究式学习方式,并在教学中贯彻“以学定教”的原则,根据教学实际及时调整教学方案。

  [学法指导]:引导学生全员参与,全过程参与,通过启发调整激励来体现教师的作用,根据学生的认知情况和情感发展来调整整个学习活动的梯度和层次,保证学生的认知水平和情感体验分层次向前推进。

  教学过程:

  一、复习回顾,了解学情

  1.什么叫平行四边形?

  2.平行四边形有哪些性质?

  (以上两个问题视学生掌握情况决定是否需要转化为数学语言)

  二、创设情境,引导探究:

  1.提出问题:若判断一个四边形是平行四边形,需要哪些条件?

  (了解学生是否有自学习惯是否能说出平行四边形的判别方法,并不重要,可视学生回答情况决定下一步的教学策略)

  三、动手操作,建立模型:

  情境一、二见学案相应部分

  设计意图:与平行四边形性质相比较:平行四边形的判别方法显得更抽象一些,学生理解起来会更困难一些,让学生通过动手操作——实际验证,理论论证——概括总结这几个步骤在学生借助图形进行合理推理的过程中增强参与意识,培养学生探究能力,养成良好思维习惯,提高他们的认知水平,设置②③步是考虑到八年级学生对几何说理缺乏足够深度和广度,力求通过探索这种特定数学活动,让学生获取一些经验方法,逐步形成较为严密的说理体系。

  四、解释应用,深化认知

  例题及练习 见学案相应部分

  设计意图:让学生通过已有的生活经验和数学知识,把探索出的平行四边形的判定条件逐步应用于问题的解决中去,实现概念理解和结论掌握的感性到理性的自然深化,以培养学生的思维能力为立足点,目的在于培养学生多层次,多角度的思维能力。三次变式本着“由简到难,由静到动”的顺序,一步步加大题目的开放性,增加题目挖掘的深度和广度,全面认识“对角线互相平分的四边形是平行四边形”从而力求实现学生认知的螺旋上升。

  五、小结与反馈

  本节课你有哪些收获与体会

  培养学生“学习、总结、反思、学习”的良好学习习惯。

  六、布置作业,提高能力

  平行四边形的判定教学设计 2

  目标设计:

  知识目标:

  1、在对平行四边形认识的基础上,探索平行四边形的判定方法。

  2、通过逆命题的猜想、操作验证、逻辑推理证明的过程,体验数学研究和发现的过程,学会数学思考的方法。

  能力目标:

  能综合运用平行四边形的判定方法和性质解决一些简单的问题。

  德育目标:

  发展学生的合情推理能力,进一步培养学生的逻辑推理能力,规范推理的书写格式。

  重点、难点:

  重点:探究并掌握平行四边形的判定方法,能综合运用平行四边形的判定解决问题。

  难点:理解合情推理和逻辑推理的融合,书写规范的推理过程。

  教学方法:探究式

  学习方法:自主学习、合作交流

  教具准备:三角板、圆规、木条(两个长的'相等,两个短的相等)、多媒体课件

  方法设计:

  导入新课

  1、创设问题情境

  有一块平行四边形的玻璃块,假如不小心打碎了,聪明的师傅拿着细绳很快将原来的平行四边形画出来了,你知道他用的是什么方法吗?带着这个问题,我们进入今天的探索。

  板书课题:平行四边形的判定(一)

  交待本节课的学习目标。

  2、回忆旧知

  (1)平行四边形的定义?

  (2)平行四边形具有哪些性质?

  (3)互逆命题的定义?

  3、提出问题,引入新知

  怎样判定一个四边形是平行四边形呢?当然,我们可以根据定义:两组对边分别平行的四边形是平行四边形来判定。还有其他的判定方法吗?本节课我们共同研究这个问题。

  探究新知

  一、自主学习

  (1)学生自主学习本节内容,整体感知,圈点出难点疑点。

  (2)大胆猜想:

  你能写出“平行四边形的两组对边分别相等”的逆命题吗?猜想这个命题是真命题还是假命题?

  活动结果:根据上一章所学习的逆命题定义,学生独立写出,进行大胆猜想。

  二、合作交流,实验操作(多媒体课件演示)

  请同学们拿出自己准备好的四段木条,四个同学一组活动,观察思考。

  问题:

  (一)、这四段木条能拼成一个平行四边形吗?

  (二)、转动这个四边形,改变它的形状,它一直是一个平行四边形吗?

  (三)、由此你可以得到什么结论?

  活动:学生动手操作,认真观察,精心交流,发表见解,得到结论,教师可以参与讨论,指导点拨。

  三、展示反馈

  抽小组代表将上述讨论结果展示给大家,实际操作,不足之处其他同学补充,教师多媒体演示,及时点拨,组织好学生。

  学生明确:两组对边分别相等的四边形是平行四边形。

  四、逻辑推理

  你能用所学的知识证明上述的猜想成立吗?

  已知:如图,在平行四边形ABCD中,AD=BC,AB=CD。

  求证:四边形ABCD是平行四边形。

  抽学生代表展示:

  证明:连结AC

  ∵AD=BC,AB=CD,AC=AC

  ∴△ABC≌△CDA(SSS)

  ∠1=∠2,∠3=∠4(全等三角形的性质)

  ∴AB∥CD,AD∥BC(内错角相等,两直线平行)

  ∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形)

  由此我们得出平行四边形除定义之外,判定平行四边形的方法一:

  两组对边分别平行的四边形是平行四边形。

  符号表示:

  在四边形ABCD中,∵AD∥BC,AB∥DC,∴四边形ABCD是平行四边形。

  练习设计:

  1、已知: ABCD中,E,F分别是AB,CD的中点。

  求证:四边形AECF是平行四边形。

  2、已知:E、F是平行四边形ABCD对角线AC上的两点,并且AE=CF。

  求证:四边形BFDE是平行四边形

  课堂小结:

  学生总结:本节课的收获,判定平行四边形的方法:两组对边分别相等的四边形是平行四边形。

  教师总结:探索平行四边形的判定方法的一般思路:逆命题猜想——操作验证——逻辑推理,提高自己的逻辑推理论证能力。

  课后作业:课后练习1、2。

  设计说明:

  本节课在引入的环节上,采用复习引入的方式。首先复习了平行四边形的定义和性质,唤起学生对已有知识的回忆,接着通过探究逆命题的真假直接引出本节课的学习内容和任务。同时,让学生初步感受平行四边形的性质与判定的区别与联系,为平行四边形的性质和判定的综合运用作了铺垫。

  知识的真正获得不是靠知者的“告诉”,而是在于学习者的亲身体验所得,本节课判定方法的得出都非常重视知识的发生、形成过程,让学生亲历了类比、观察、实验、猜想、验证、推理的整个过程,培养学生的探究能力,发展学生的合情推理能力。

  数学的学习要重视学习方法的指导。本节课通过由浅入深的练习和灵活的变式,引导学生善于抓住图形的基本特征和题目的内在联系,达到触类旁通的效果。

  平行四边形的判定教学设计 3

  【学习目标】

  学法指导:仔细阅读,做到有的放矢。

  【重点】

  平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法.

  【教学过程】

  一、知识链接

  1、用定义法证明一个四边形是平行四边形时,要什么条件?

  2、用所学的判定方法一判定一个四边形的平行四边形的条件是什么?

  3、平行四边形的一组对边平行且相等的逆命题如何表达?是否是真命题?平行四边形的两组对角相等的逆命题如何表达?是否是真命题?

  二、教材预习

  学法指导:课前独学教材预习内容,总结本节课的重点、难点、注意点。课堂再以小组为单位交流,找出还存在的问题,并在小黑板上扼要展示本节重点内容和存在的问题。注意双色笔的使用,书写工整。

  1、预习内容:自学课本88页例4前,完成P90练习2。

  2、预习测试:

  从定义出发可知两组对边分别平行的四边形是平行四边形。除此之外,我们可以通过研究平行四边形性质定理的逆命题得到平行四边形的其他判定方法:

  判定定理3:

  几何语言为:

  判定定理4:

  几何语言为:

  4、用以前学过的知识证明:

  合作探究

  学法指导:课前独学,解决会的,有问题的上课对子或小组交流,形成共识,进行课堂大展示。展示时要讲清所用知识点、易错点。展示到小黑板的题要标清所用知识点、易错点;注意双色笔的使用,字体工整。

  探究点一:判定定理3的应用

  平行四边形判定方法3两组对角分别相等的四边形是平行四边形。

  下列条件中,能判断四边形ABCD是平行四边形的'是()

  (A)AB∥CD,AD=BC(B)∠A=∠B,∠C=∠D

  (C)∠A=∠C,∠B=∠D(D)AB=AD,CB=CD

  探究点二:判定定理4的应用

  平行四边形判定方法4一组对边平行且相等的四边形是平行四边形。

  已知:如图,ABCD中,E、F分别是AC上两点,且BE⊥AC于E,DF⊥AC于F.求证:四边形BEDF是平行四边形.

  变式:已知:如图3,E、F是平行四边形ABCD对角线AC上两点,且AE=CF。

  求证:四边形BFDE是平行四边形。(你有几种证明方法,对比之下使用什么方法较简便)

  探究点三:判定的综合应用

  在四边形ABCD中,(1)AB∥CD;(2)AD∥BC;(3)AD=BC;(4)AO=OC;(5)DO=BO;(6)AB=CD.选择两个条件,能判定四边形ABCD是平行四边形的共有哪些结合方式.(共有9对)

  四、小结提升

  学法指导:1、对照学习目标找差补缺。2、画出知识树。

  通过本节课的学习,你有什么收获?你还有什么困惑?

  画知识树

  五、达标测试

  学法指导:1、分层达标,敢于突破,横向比较,找出差距。

  2、完成较早的小组与同学把答案写到小黑板上奖励分5’

  3、对子互改,组长验收,教师查阅。

  A、基础达标

  1、判断题:

  (1)相邻的两个角都互补的四边形是平行四边形;()

  (2)两组对角分别相等的四边形是平行四边形;()

  (3)一组对边平行,另一组对边相等的四边形是平行四边形;()

  (4)一组对边平行且相等的四边形是平行四边形;()

  (5)对角线相等的四边形是平行四边形;()

  (6)对角线互相平分的四边形是平行四边形.()

  2、延长△ABC的中线AD至E,使DE=AD.求证:四边形ABEC是平行四边形.

  B、能力测试

  3、如图,E、F是四边形ABCD对角线AC上两点,AF=CE,DF∥BE,DF=BE。

  求证:四边形ABCD是平行四边形。

  4、已知:E、F分别为平行四边形ABCD两边

  AD、BC的中点,连结BE、DF

  求证:

  C、拓展与提高

  5、已知:在ABCD中,AE、CF分别是∠DAB、∠BCD的平分线.

  求证:四边形AFCE是平行四边形.

  平行四边形的判定教学设计 4

  一、 教学目标

  (一)知识教学点

  1.了解;方程算术解法与代数解法的区别。

  2.掌握:代数解法解简易方程。

  (二)能力训练点

  1.通过代数解法解简易方程的 学习 使学生认识问题头脑不僵化,培养其创造性思维的能力。

  2.通过代数法解简易方程进一步培养学生运算能力和逻辑思维能力。

  (三)德育渗透点

  1.培养学生实事求是的科学态度,用发展的眼光看问题的辩证唯物主义思想。

  2.渗透化“未知”为“已知”的化归思想。

  (四)美育渗透点

  通过用新的方法解简易方程,使学生初步领略 数学 中的方法美。

  二、学法引导

  1.教学方法:引导发现法。注意教学中民主意识和学生的主体作用的体现。

  2.学生学法:识记→练习反馈

  三、重点、难点、疑点及解决办法

  1.重点:代数解法解简易方程。

  2.难点:解方程时准确把握两边都加上(或减去)、乘以(或除以)同一适当的数。

  3.疑点:代数解法解简易方程的依据。

  四、课时安排

  1课时

  五、教具学具准备

  投影仪或电脑、自制胶片。

  六、师生互动活动设计

  教师创设情境,学生解决问题。教师介绍新的方法,学生反复练习。

  七、教学步骤

  (一)创设情境,复习导入

  (出示投影1)

  引例:班上有37名同学,分成人数相等的两队进行拔河比赛,恰好余3人当裁判员,每个队有多少人?

  师:该问题如何解决呢?请同学们考虑好后写在练习本上.

  学生活动:解答问题,一个学生板演.

  师生共同订正,对照板演学生的做法,师问:有无不同解法?

  学生活动:回答问题,一个学生板演,其他学生比较两种解法.

  问;这两种解法有什么不同呢?

  学生活动:积极思索,回答问题.(一是列算式的解法,二是列方程的解法).

  师:很好.为了叙述问题方便,我们分别把这两种解法叫做算术解法和代数解法. 小学 学过的应用题可用算术方法也可用代数方法解.有时算术方法简便,有时代数方法简便,但是随着 学习 的逐步展开,遇到的问题越来越复杂,使用代数解法的优越性将会体现的越来越充分,因此,在初中代数课上,将把方程的知识作为一个重要的内容来 学习 .当然,在开始 学习 方程时,还是要从简单的方程入手,即简易方程.引出课题.

  [板书]1.5简易方程

  (二)探索新知,讲授新课

  师:谈到方程,同学们并不陌生,你能说明什么叫方程吗?

  学生活动:踊跃举手,回答问题。

  [板书] 含有未知数的等式叫方程

  接问:你还知道关于方程的其他概念吗?

  学生活动:积极思考并回答。

  [板书] 方程的解;解方程

  追问:能再具体些吗?即什么叫方程的解?什么叫解方程?并举例说明.学生活动:互相讨论后回答.(使方程左右两边相等的未知数的值叫做方程的解;求方程的解的过程叫解方程,例如方程: 是方程的解,求 的过程叫解方程.)

  师:很好.怎样解方程呢?

  例如 解方程

  学生活动:一个学生回答,师板书,并要求学生说出根据。

  解:第一步 ,(把 看作一个数,根据一个加数等于和减去另一个数)

  第二步 (根据一个因数等于积除以另一个因数)

  师:好!这是 小学 学的解方程的方法。在初中代数课上,我们要从另一角度来解,还以上边这个方程为例。

  [板书]

  解:第一步看作方程两边都减去9,得

  第二步看作方程两边都除以3,得

  问:这种解法合理吗?

  学生活动:相互讨论达成共识(合理。因把 代入方程 ,左边=右边,所以 是方程的解)

  【教法说明】先复习 小学 有关方程的几个概念和解法,再提代数解法,形成对比,使学生认识到同一问题可从不同角度去考虑,即培养了发散思维。正是因为认识问题的不同侧面,导致学生感到疑惑,这时让学生自己去检验新方法的合理性,不但可消除疑虑,而且还有助于发展学生的创造能力。

  师:以前的方法只能解很简单的方程,而后者则可以解较复杂的方程,因此更为重要。为了更好的理解和熟悉这种解法,我们共同做例1。

  (三)尝试反馈,巩固练习

  例1 解方程

  问:你认为第一步方程两边应加上(或减去)什么数最合适?为什么?

  学生活动:思考并回答.(师板书)

  问:你认为第二步方程两边应乘以(或除以)什么数最合适?为什么?

  学生活动:思考并回答(师板书)

  解:方程两边都加上5,得

  ,

  方程两边都乘以2,得

  ,

  x =32

  问:这个结果正确吗?请同学们自己检验.

  学生活动:练习本上检验并回答问题.(正确)

  师:这种新方法解方程时,第一步目的是什么?第二步目的是什么?从而确定出该加上(或减去)怎样的数,该乘以(或除以)怎样的数更合适.

  学生活动:回答这两个问题.

  【教法说明】虽然解方程的过程由教师板书,但整个思路是由学生形成的,使新方法在学生头脑中越来越清晰,直到真正认识并掌握它,这样也体现了学生的主体性,由“学会”型向“会学”型转化,对培养学生的思维能力很有帮助.

  师:上题在我们共同努力下得以解决,下面看你们自己的表现怎样?

  例2? 解方程 。

  学生活动:在练习本上做,一个学生板演.

  师生共同订正.

  师:这里虽不要求同学们检验,但今后希望同学们养成自我检查的.良好习惯.

  【教法说明】通过例2的教学训练学生的判断能力及运算能力,树立矛盾转化思想.

  (四)变式训练,培养能力

  (出示投影2)

  1.(口答)解下列方程

  (1) ;  (2) ;

  2.判断,并说明理由

  (1) 不是方程( )

  (2) 与 的解都是 ( )

  (3)不同方程的解一定不同( )

  4.求 使 的值等于27。

  学生活动:1、2题口答,3、4题在练习本上书写,可互相讨论,3、4题师巡回指导。

  【教法说明】1题让学生困难同学回答,增强自信心;2题澄清模糊认识,可充分讨论,让学生各抒已见;3题较1题稍复杂,一是让学生体会新解法的优越性,二是培养学生观察分析解决问题的能力;4题其实也是解方程,目的是开阔学生思路,培养学生勇于探索、大胆求异的创新精神。

  (五)归纳小结

  (由学生归纳)

  1.按照新方法解方程,一般采用下面两点:

  (1)方程两边都加上(或减去)同一适当的数;

  (2)方程两边都乘以(或除以)同一适当的数。

  2.为了保证运算准确,养成检验的习惯。

  八、随堂练习

  1.选择题

  (1)在(1) ;(2) ;(3) ;(4) 中方程有( )

  A.1个 B.2个 C.3个 D.4个

  (2)2是( )方程的解

  A. B.

  C. D.

  2.解方程

  3.求 ,使 与 互为倒数。

  九、布置作业

  (一)必做题:课本第31页A组1.(2)(4)、 2.(1)(3)(5)

  (二)选做题:思考课本B组1、2。

  十、 板书设计

  附:1.5? 简易方程

  随堂练习答案

  1.B? C.  2. 3.

  作业答案

  探究活动

  甲、乙二人从相距30m的两地同向而行,甲每秒走7m,乙每秒走6.5m,如果甲先出发1秒钟后,乙才出发,求甲出发后几秒钟追上乙?

  解法(-)设甲出发后 秒追上乙,则甲走的路程为 m,乙比甲晚1秒钟出发,乙少走1秒钟,此时,乙走的路程为 m,甲追上乙表示甲比乙多走30m。根据题意列出方程是:

  解得 (秒)

  答:甲出发后47秒追上乙.

  解法(二)设甲出发后 秒追上乙,甲先走1秒钟,甲先走了 m,这样甲追上己只需多走 (m).这时甲、乙二人都走了( )秒,甲走的路程为 m,乙走的路程为 m,乙比甲走的路程少 (m),根据题意列出方程是:

  解得 (秒)

  答:甲出发后47秒追上乙.

  解法(三)设已出发后 秒,甲追上乙,因为甲先走1秒,所以甲走了 ,乙走了 秒,甲走的路程比已走的路程多30m,依据此等量关系列出方程为:

  解得 秒

  甲走的时间为 (秒)

  答:甲出发后47秒追上乙.

  平行四边形的判定教学设计 5

  一、 教学目标:

  1.掌握用一组对边平行且相等来判定平行四边形的方法.

  2.会综合运用平行四边形的四种判定方法和性质来证明问题.

  3.通过平行四边形的性质与判定的应用,启迪学生的思维,提高分析问题的能力.

  二、 重点、难点

  1.重点:平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法.

  2.难点:平行四边形的判定定理与性质定理的综合应用.

  三、例题的意图分析

  本节课的两个例题都是补充的题目,目的是让学生能掌握平行四边形的第三种判定方法和会综合运用平行四边形的判定方法和性质来解决问题.学生程度好一些的学校,可以适当地自己再补充一些题目,使同学们会应用这些方法进行几何的推理证明,通过学习,培养学生分析问题、寻找最佳解题途径的能力.

  四、课堂引入

  1. 平行四边形的性质;

  2. 平行四边形的判定方法;

  3. 【探究】 取两根等长的木条AB、CD,将它们平行放置,再用两根木条BC、AD加固,得到的四边形ABCD是平行四边形吗?

  结论:一组对边平行且相等的四边形是平行四边形.

  五、例习题分析

  例1(补充)已知:如图, ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.

  分析:证明BE=DF,可以证明两个三角形全等,也可以证明

  四边形BEDF是平行四边形,比较方法,可以看出第二种方法简单.

  证明:∵ 四边形ABCD是平行四边形,

  AD∥CB,AD=CD.

  ∵ E、F分别是AD、BC的中点,

  DE∥BF,且DE= AD,BF= BC.

  DE=BF.

  四边形BEDF是平行四边形(一组对边平行且相等的'四边形平行四边形).

  BE=DF.

  此题综合运用了平行四边形的性质和判定,先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用知识较多,因此应使学生获得清晰的证明思路.

  例2(补充)已知:如图, ABCD中,E、F分别是AC上两点,且BEAC于E,DFAC于F.求证:四边形BEDF是平行四边形.

  分析:因为BEAC于E,DFAC于F,所以BE∥DF.需再证明BE=DF,这需要证明△ABE与△CDF全等,由角角边即可.

  证明:∵ 四边形ABCD是平行四边形,

  AB=CD,且AB∥CD.

  BAE=DCF.

  平行四边形的判定教学设计 6

  教学建议

  1、重点平行四边形的判定定理

  重点分析平行四边形的判定方法涉及平行四边形元素的各方面,同时它又与平行四边形的性质联系,判定一个四边形是否为平行四边形是利用平行四边形性质解决其他问题的基础,所以平行四边形的判定定理是本节的重点、

  2、难点灵活运用判定定理证明平行四边形

  难点分析平行四边形的判定方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点、

  3、关于平行四边形判定的教法建议

  本节研究平行四边形的判定方法,重点是四个判定定理,这也是本章的重点之一。

  1、教科书首先指出,用定义可以判定平行四边形、然后从平行四边形的性质定理的逆命题出发,来探索平行四边形的判定定理、因此在开始的教学引入中,要充分调动学生的情感因素,尽可能利用形式多样的多媒体课件,激发学生兴趣,使学生能很快参与进来、

  2、素质教育的主旨是发挥学生的主体因素,让学生自主获取知识、本章重点中前三个判定定理的顺序与它的性质定理相对应,因此在讲授新课时,建议采用实验式教学模式或探索式教学模式:在证明每个判定定理时,由学生自己去判断命题成立与否,并根据过去所学知识去验证自己的结论,比较各种方法的优劣,这样使每个学生都积极参与到教学中,自己去实验,去探索,去思考,去发现,在动手动脑中得到的结论会更深刻――同时也要注意保护学生的参与积极性、

  3、平行四边形的判定方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点、因此在例题讲解时,建议采用启发式教学模式,根据题目中具体条件结合图形引导学生根据分析法解题程序从条件或结论出发,由学生自己去思考,去分析,充分发挥学生的主体作用,对学生灵活掌握熟练应用各种判定定理会有帮助。

  [教学目标]

  通过本节课教学,使学生训练掌握平行四边形的各条判定定理,并能灵活地运用平行四边形的性质定理和判定定理及以前学过的知识进行有关证明,培养学生的逻辑思维能力。

  [教学过程]

  一、准备题系列

  1、复习旧知识:前面我们学习了平行四边形的性质,哪位同学能叙述一下。(答对者记分,答错的另点同学补充)

  2、小实验:有一块平行四喧形的玻璃片,假如不小心碰碎了解部分,同学们想想看,有没有办法把原来的平行四边形重新画出来?

  (让学生思考讨论,再各自画图,画好后互相交流画法,教师巡回检查。对个别差生稍加点拨,最后请学生回答画图方法)学生可能想到的'画法有:

  ⑴分别过A、C作DC、DA的平行线,两平行线相交于B;

  ⑵过C作DA的平行线,再在这平行线上截取CB=DA,连结BA;

  ⑶分别以A、C为圆心,以DC、DA的长为半径画弧,两弧相交于B,连结AB、CB。

  还有一种一法,学生不易想到,即由平行四边形对角线的特性,引导学生得出连结AC,取AC的中点O,再连结DO,并延长DO至B,使BO=DO,连结AB、CD。

  二、引入新课

  上面作出的四边形是否都是平行四边形呢?请同学们猜一猜。生答后师指出这就是今天所要不得研究的问题“平行四边形的判定”(板书课题)。

  三、尝试议练

  1、要判定我们刚才画出的四边形是不是平行四边形,应当加以证明。第一种画法,由平行四边形的定义可知,它是平行四边形(定义可作性质也可作判定)。

  2、现在我们来看看第二种画法,这就是平行四边形判定定理一(翻开课本看它的文字叙述)。请想想,一组对边平行且相等的四边形究竟是不是平行四边形呢?这里已知是什么?求证是什么?请写出。

  自学课本上的证明过程,看后提问:这个证明题不作辅助线行不行?为什么?(因为要证平行线,一般要证两角相等,或互补,要证两角相等,一般要证全等三角形,而这里没有三角形,要连一对角线才有三角形)

  3、再看第三种画法,在两组对边分别相等的情况下是不是平行四边形?教师写出已知、求证,请两位学生上台证明,其余在课堂练习本上做。(注意考虑要不要添辅助线)完成证明后提问哪些学生是用判定定理一落千丈证明的?哪些是用定义证明的?(解题后思考)

  四、变式练习

  1、再看看第四种画法,可知,已各条件是四边形的对角线互相一平分,这种情况下它是不平行四边形?

  阅读课本上的判定定理之后,要求学生思考用什么方法求证最简便?(应该用判定定理一)

  2、变式题

  ⑴两组对角分别相等的四边形是不是平行四边形?为什么?(练习第1题)(口述证明,不要示书面证明)(问要不要添辅助线?)

  ⑵一组对边平行,一组对角相等的四边形是不是平行四边形?(教师补充)

  ⑶一组对边相等,一组对家相等及一组对边相等,另一组对边相等的四边形是不是平行四边形?(引导学生在草稿纸上画图思考,然后回答不是平行四边形。因为边角不能证全等三角形)

  ⑷自学课本例1思考:此例证明中,什么地方用了平行四边形的“性质”?什么地方用“判定”定理?

  观察下图:

  平行四边形ABCD中,<A、<C的平行线分别交对边于E和F,求证:AE=FC(怎样证最简便?)

  五、课堂小结

  1、今天这节课我们学了什么?平行四这形的判定有哪些方法?试列举之。

  2、这些平行四边形的判定方法中最基本的是哪一条?

  3、平行四边形的判定定理和性质有什么关系?同一个证明题中应注意什么地方用判定,什么地方性质?

  平行四边形的判定教学设计 7

  教学目标

  1.能解简易方程,并能用简易方程解简单的应用题。

  2.初步培养学生方程的思想及分析解决问题的能力。

  教学重点 和难点

  重点:简易方程的解法和根据实际问题列出方程。

  难点:正确地列出方程。

  课堂 教学过程 设计

  一、从学生原有的认知结构提出问题

  1.针对以往学过的一些知识,教师请学生回答下列问题:

  (1)什么叫等式?等式的两个性质是什么?

  (2)下列等式中x取什么数值时,等式能够成立?

  2.在学生回答完上述问题的基础上,引出课题

  在 小学 学习 方程时,学生们已知有关方程的三个重要概念,即方程、方程的解和解方程.现在 学习 了等式之后,我们就可以更深刻、更全面 地理 解这些概念,并同时板书课题:简易方程.

  二、讲授新课

  1.方程

  在等式4+x=7中,我们将字母x称为未知数,或者说是待定的数.像这样含有未知数的等式,称为方程.并板书方程定义.

  例1? (投影)判断下列各式是否为方程,如果是,指出已知数和未知数;如果不是,说明为什么.

  (1)5-2x=1;(2)y=4x-1;(3)x-2y=6;(4)2x2+5x+8.

  分析:本题在解答时需注意两点:

  一是已知数应包括它的符号在内;

  二是未知数的系数若是1,这个省写的1也可看作已知数.

  (本题的解答应由学生口述,教师利用投影片打出来完成)

  2.简易方程

  简易方程这一小节的前面主要是复习、归纳 小学 学过的 有关方程的基本知识,提出了算术解法与代数解法的说法,以便以后逐步讲述代数解法的优越性。

  例2 解下列方程:

  分析 方程(1)的'左边需减去 ,根据等式的性质(2),必须两边同时减去 ,得 ,方程的左边需要乘以3,使 的系数化为1,根据等式的性质(3),必须两边同时乘以3,得 ,方程(2)的解题思路与(1)类似。

  解(1)方程两边都减去 ,得

  两边都乘以3,得 。

  (2)方程两边都加上6,得 。

  方程两边都乘以 ,得 ,即 。

  注意:(1)根据方程的解的概念,我们可以将所得结果代入原方程检验,如果左边=右边,说明结果是正确的,否则,左边≠右边,说明你求得的x的值,不是原方程的解,肯定计算有错误,这时,一定要细心检查,或者再重解一遍.

  (2)解简易方程时,不要求写出检验这一步.

  例3 甲队有54人,乙队有66人,问从甲队调给乙队几人能使甲队人数是乙队人数的 ?

  分析此题必须弄清:

  一、甲、乙两队原来各有多少人;

  二、变动后甲、乙两队各有多少人(注意:甲队减少的人数正是乙队增加的人数);

  三、题中的等量关系是:

  变动后甲队人数是乙队人数的 ,即变动后甲队人数的3倍等于乙队人数.

  解? 设从甲队调给乙队x人,

  则变动后甲队有 人,乙队有 人,根据题意,得:

  答:从甲队调给乙队24人。

  三、课堂练习 (投影)

  1.判断下列各式是不是方程,如果是,指出已知数和未知数;如果不是,说明为什么.

  (1)3y-1=2y;? (2)3+4x+5x 2 ;? (3)7×8=8×7? (4)6=0.

  2.根据条件列出方程:

  (l)某数的一半比某数的3倍大4;

  (2)某数比它的平方小42.

  3.检验下列各小题括号里的数是不是它前面的方程的解:

  四、师生共同小结

  1.请学生回答以下问题:

  (1)本节课 学习 了哪些内容?

  (2)方程与代数式,方程与等式的区别是什么?

  (3)如何列方程?

  2.教师在学生回答完上述问题的基础上,应指出:

  (1)方程、等式、代数式,这三者的定义是正确区分它们的唯一标准;

  (2)方程的解是一个数值(或几个数值),它是使方程左、右两边的值相等的未知数的值它是根据未知数与已知数之间的相等关系确定的而解方程是指确定方程的解的过程,是一个变形过程.

  五、作业

  1.根据所给条件列出方程:

  (1)某数与6的和的3倍等于21;

  (2)某数的7倍比某数大5;

  (3)某数与3的和的平方等于这数的15倍减去5;

  (4)矩形的周长是40,长比宽多10,求矩形的长与宽;

  (5)三个连续整数之和为75,求这三个数.

  2.检验下列各小题括号里的数是否是它前面的方程的解:

  (3)x(x+1)=12,(x=3,x=4).

  平行四边形的判定教学设计 8

  一、教学目标

  经历探索平行四边形判别条件的过程,培养学生操作、观察和说理能力;掌握两组对边分别相等的四边形是平行四边形这一判别条件。

  二、教材分析

  本节课是在学生学习了平行四边形的两个判定定理之后即将学习的第三个判定定理——两组对边分别相等的四边形是平行四边形。

  三、教学重难点

  重点:

  探索并掌握平行四边形的判别条件。

  难点:

  对平行四边形判别条件的理解及说理的基本方法的掌握。

  四、教学准备

  两根长40厘米 和两根长30厘米的木条

  五、教学设计

  首先复习平行四边形的定义,然后通过学生活动发现平行四边形的另一判定定理,然后借助各种方法加以验证。最后依靠课本所设计的“做一做” ,“议一议” 以及“随堂练习”加深对平行四边形判定定理的理解。

  六、教学过程

  1、复习平行四边形的定义。(旨在为证明一个四边形是平行四边形做铺垫)

  2、小组活动

  用两根长40厘米和两根30厘米的木条作为四边形的四条边,能否拼成平行四边形?与同伴进行交流。 (通过小组活动,学生亲自动手操作,得出结论——当两组对边相等时,四边形是平行四边形;对边不相等时,所围成的四边形不是平行四边形)。 平行四边形的判定定理——两组对边相等的四边形是平行四边形。

  3、课本91页的“做一做” (其目的`是巩固和应用“两组对边相等的四边形是平行四边形”的判定定理。)

  4、“议一议”

  问题1、一组对边平行,另一组对边相等的四边形一定是平行四边形吗?说说你的想法。 (先鼓励学生自主探索,再分组讨论,最后全班交流得出正确结论)

  问题2、要判别一个四边形是平行四边形,你有哪些方法?

  5、通过课本的“随堂练习”,使学生对平行四边形的判别条件加以应用和巩固

  平行四边形的判定教学设计 9

  一、教学目标:

  1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法。

  2.会综合运用平行四边形的判定方法和性质来解决问题。

  3.培养用类比、逆向联想及运动的思维方法来研究问题。

  二、重点、难点

  1.重点:平行四边形的判定方法及应用。

  2.难点:平行四边形的判定定理与性质定理的灵活应用。

  3.难点的突破方法:平行四边形的判别方法是本节课的核心内容。同时它又是后面进一步研究矩形、菱形、正方形判别的基础,更是发展学生合情推理及说理的良好素材。本节课的教学重点为平行四边形的判别方法。在本课中,可以探索活动为载体,并将论证作为探索活动的自然延续与必要发展,从而将直观操作与简单推理有机融合,达到突出重点、分散难点的目的。

  (1)平行四边形的判定方法1.2都是平行四边形性质的逆命题,它们的证明都可利用定义或前一个方法来证明。

  (2)平行四边形有四种判定方法,与性质类似,可从边、对角线两方面进行记忆。

  要注意:

  ①本教材没有把用角来作为判定的方法,教学中可以根据学生的情况作为补充;

  ②本节课只介绍前两个判定方法。

  (3)教学中,我们可创设贴近学生生活、生动有趣的问题情境,开展有效的数学活动,如通过欣赏图片及识别图片中的平行四边形,使学生建立对平行四边形的直觉认识。并复习平行四边形的定义,建立新旧知识间的相互联系。接着提出问题:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?从而组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流的过程中,从整体上把握“平行四边形的判别”的方法。然后利用学生手中的学具——硬纸板条通过观察、测量、猜想、验证、探索构成平行四边形的条件。在学生拼图的活动中,教师可以以问题串的形式展开对平行四边形判别方法的探讨,让学生在问题解决中,实现对平行四边形各种判别方法的掌握,并发展了学生说理及简单推理的能力。

  (4)从本节开始,就应让学生直接运用平行四边形的性质和判定去解决问题,凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明。应该对学生提出这个要求。

  (5)平行四边形知识的运用包括三个方面:

  一是直接运用平行四边形的性质去解决某些问题。例如求角的度数,线段的长度,证明角相等或线段相等等;

  二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题。

  (6)平行四边形的概念、性质、判定都是非常重要的基础知识,这些知识是本章的重点内容,要使学生熟练地掌握这些知识。

  三、例题的意图分析

  本节课安排了3个例题,例1是教材p96的例3,它是平行四边形的性质与判定的综合运用,此题最好先让学生说出证明的思路,然后老师总结并指出其最佳方法。例2与例3都是补充的题目,其目的就是让学生能灵活和综合地运用平行四边形的判定方法和性质来解决问题。例3是一道拼图题,教学时,可以让学生动起来,边拼图边说明道理,即可以提高学生的动手能力和学生的思维能力,又可以提高学生的学习兴趣。如让学生再用四个不等边三角形拼一个如图的大三角形,让学生指出图中所有的平行四边形,并说明理由。

  四、课堂引入

  1.欣赏图片、提出问题。展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?

  2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?让学生利用手中的'学具——硬纸板条通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:

  (1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?

  (2)你怎样验证你搭建的四边形一定是平行四边形?

  (3)你能说出你的做法及其道理吗?

  (4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?

  (5)你还能找出其他方法吗?从探究中得到:平行四边形判定方法1两组对边分别相等的四边形是平行四边形。

  平行四边形判定方法2对角线互相平分的四边形是平行四边形。

  五、例习题分析例

  1(教材p96例3)已知:如图abcd的对角线ac、bd交于点o,e、f是ac上的两点,并且ae=cf.求证:四边形bfde是平行四边形。分析:欲证四边形bfde是平行四边形可以根据判定方法

  2来证明。(证明过程参看教材)问;你还有其它的证明方法吗?比较一下,哪种证明方法简单。例2(补充)已知:如图,a′b′∥ba,b′c′∥cb,c′a′∥ac.求证:(1) ∠abc=∠b′,∠cab=∠a′,∠bca=∠c′;(2) △abc的顶点分别是△b′c′a′各边的中点。证明:(1) ∵ a′b′∥ba,c′b′∥bc,∴四边形abcb′是平行四边形。∴ ∠abc=∠b′(平行四边形的对角相等).同理∠cab=∠a′,∠bca=∠c′.(2)由(1)证得四边形abcb′是平行四边形。同理,四边形aba′c是平行四边形。∴ ab=b′c,ab=a′c(平行四边形的对边相等).∴ b′c=a′c.同理b′a=c′a,a′b=c′b.∴ △abc的顶点a、b、c分别是△b′c′a′的边b′c′、c′a′、a′b′的中点。例3(补充)小明用手中六个全等的正三角形做拼图游戏时,拼成一个六边形。你能在图中找出所有的平行四边形吗?并说说你的理由。解:有6个平行四边形,分别是abof,abco,bcdo,cdeo,defo,efao.理由是:因为正△abo≌正△aof,所以ab=bo,of=fa.根据“两组对边分别相等的四边形是平行四边形”,可知四边形abcd是平行四边形。其它五个同理。

  六、随堂练习

  如图,在四边形abcd中,ac、bd相交于点o。

  (1)若ad=8cm,ab=4cm,那么当bc=___ _cm,cd=___ _cm时,四边形abcd为平行四边形;

  (2)若ac=10cm,bd=8cm,那么当ao=__ _cm,do=__ _cm时,四边形abcd为平行四边形。

  2.已知:如图,abcd中,点e、f分别在cd、ab上,df∥be,ef交bd于点o.求证:eo=of.

  3.灵活运用课本p89例题,如图:由火柴棒拼出的一列图形,第n个图形由(n+1)个等边三角形拼成,通过观察,分析发现:

  ①第4个图形中平行四边形的个数为___ __.(6个)

  ②第8个图形中平行四边形的个数为___ __.(20个)

  七、课后练习

  (选择)下列条件中能判断四边形是平行四边形的是()

  1.(a)对角线互相垂直(b)对角线相等(c)对角线互相垂直且相等(d)对角线互相平分

  2.已知:如图,△abc,bd平分∠abc,de∥bc,ef∥bc,求证:be=cf19.1.2

  平行四边形的判定教学设计 10

  一、素质教育目标

  (一)知识教学点

  1.掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用.

  2.使学生理解判定定理与性质定理的区别与联系.

  3.会根据简单的条件画出平行四边形,并说明画图的依据是哪几个定理.

  (二)能力训练点

  1.通过“探索式试明法”开拓学生思路,发展学生思维能力.

  2.通过教学,使学生逐步学会分别从题设或结论出发寻求论证思路的分析方法,进一步提高学生分析问题,解决问题的能力.

  (三)德育渗透点

  通过一题多解激发学生的学习兴趣.

  (四)美育渗透点

  通过学习,体会几何证明的方法美.

  二、学法引导

  构造逆命题,分析探索证明,启发讲解.

  三、重点·难点·疑点及解决办法

  1.教学重点:平行四边形的判定定理1、2、3的应用.

  2.教学难点:综合应用判定定理和性质定理.

  3.疑点及解决办法:在综合应用判定定理及性质定理时,在什么条件下用判定定理,在什么条件下用性质定理(强调在求证平行四边形时用判定定理,在已知平行四边形时用性质定理).

  四、课时安排

  2课时

  五、教具学具准备

  投影仪,投影胶片,常用画图工具

  六、师生互动活动设计

  复习引入,构造逆命题,画图分析,讨论证法,巩固应用.

  七、教学步骤

  【复习提问】

  1.平行四边形有什么性质?学生回答教师板书

  2.将以上性质定理分别用命题的形式叙述出来.

  【引入新课】

  用投影仪打出上述命题的逆命题.

  上述第一个逆命题显然是正确的,因为它就是平行四边形的定义,所以它也是我们判定一个四边形是否为平行四边形的基本方法(定义法).

  那么其它逆命题是否正确呢?如果正确就可得到另外的判定方法(写出命题).

  【讲解新课】

  1.平行四边形的判定

  我们知道,平行四边形的对角相等,反过来对角相等的四边形是平行四边形吗?

  如图1,在四边形中,如果,那么.

  ∴.

  同理.

  ∴四边形是平行四边形,因此得到:

  平行四边形判定定理1:两组对角分别相等的'四边形是平行四边形.

  类似地,我们还会想到,两组对边相等的四边形是平行四边形吗?

  如图1,如果,连结,则△ ≌△得到,那么,则四边形是平行四边形.

  由此得到:

  平行四边形判定定理2:两组对边分别相等的四边形是平行四边形.

  (判定定理1、2的证明采用了探索式的证明方法,即根据题设和已有知识,经过推理得出结论,然后总结成定理).

  我们再来证明下面定理

  平行四边形判定定理3:对角线互相平分的四边形是平行四边形.

  (该定理采用规范证法,如图1由学生自己证明,教师可引导学生用前面三种依据分别证明,借以巩固所学知识)

  2.判定定理与性质定理的区别与联系

  判定定理1、2、3分别是相应性质定理的逆定理,彼此之间分别为互逆定理,在使用时不得混淆.

  例1已知:是对角线上两点,并且,如右图.

  求证:四边形是平行四边形.

  分析:因为四边形是平行四边形,所以对边平行且相等,由已知易证出两组三角形全等,用定义或判定定理1、2都可以,还可以连结交于利用判定定理3简单.

  证明:(由学生用各种方法证明,可以巩固所学过的知识和作辅助线的方法,并比较各种证法的优劣,从而获得证题的技巧).

  【总结、扩展】

  1.小结:(投影打出)

  (1)本堂课所讲的判定定理有

  (2)在今后解决平行四边形问题时要尽可能地运用平行四边形的相应定理,不要总是依赖于全等三角形,否则不利于掌握新的知识.

  2.思考题

  教材P144B.3

  八、布置作业

  教材P142中7;P143中8、9、10

  九、板书设计

  xxx

  十、随堂练习

  教材P138中1、2

  补充

  1.下列给出了四边形中、 、的度数之比,其中能判定四边形是平行四边形的是()

  A.1:2:3:4 B.2:2:3:3

  C.2:3:2:3 D.2:3:3:2

  2.在下面给出的条件中,能判定四边形是平行四边形的是()

  A.,B.,

  C.,D.,

  3.已知:在中,点、在对角线上,且.

  求证:四边形是平行四边形.

  平行四边形的判定教学设计 11

  教学目的:

  1、深入了解平行四边形的不稳定性;

  2、理解两条平行线间的距离定义(区别于两点间的距离、点到直线的距离)

  3、熟练掌握平行四边形的定义,平行四边形性质定理1、定理2及其推论、定理3和四个平行四边形判定定理,并运用它们进行有关的论证和计算;

  4、在教学中渗透事物总是相互联系又相互区别的辨证唯物主义观点,体验“特殊--一般--特殊”的辨证唯物主义观点。

  教学重点:

  平行四边形的性质和判定。

  教学难点:

  性质、判定定理的运用。

  教学程序:

  一、复习创情导入

  平行四边形的性质:

  边:对边平行(定义);对边相等(定理2);对角线互相平分(定理3)夹在平行线间的平行线段相等。

  角:对角相等(定理1);邻角互补。

  平行四边形的判定:

  边:两组 对边平行(定义);两组对边相等(定理2);对角线互相平分(定理3);一组对边平行且相等(定理4);两组对角分别相等(定理1)

  二、授新

  1、提出问题:平行四边形有哪些性质:判定平行四边形有哪些方法:

  2、自学质疑:自学课本P79-82页,并提出疑难问题。

  3、分组讨论:讨论自学中不能解决的问题及学生提出问题。

  4、反馈归纳:根据预习和讨论的效果,进行点拨指导。

  5、尝试练习:完成习题,解答疑难。

  6、深化创新:平行四边形的性质:

  边:对边平行(定义);对边相等(定理2);对角线互相平分(定理3)夹在平行线间的平行线段相等。

  角:对角相等(定理1);邻角互补。

  平行四边形的判定:

  边:两组 对边平行(定义);两组对边相等(定理2);对角线互相平分(定理3);一组对边平行且相等(定理4);两组对角分别相等(定理1)

  7、推荐作业

  1、熟记“归纳整理的内容”;

  2、完成《练习卷》;

  3、预习:

  (1)矩形的定义?

  (2)矩形的性质定理1、2及其推论的内容是什么?

  (3)怎样证明?

  (4)例1的解答过程中,运用哪些性质?

  思考题

  1、平行四边形的性质定理3的逆命题是否是真命题?根据题设和结论写出已 知求证;

  2、如何证明性质定理3的逆命题?

  3、有几种方法可以证明?

  4、例2的`证明中,运用了哪些性质及判定?是否有其他方法?

  5、例3的证明中,运用了哪些性质及判定?是否有其他方法?

  跟踪练习

  1、在四边形ABCD中,AC交BD 于点O,若AO=1/2AC,BO=1/2BD,则四边形ABCD是平行四边形。( )

  2、在四边形ABCD中,AC交BD 于点O,若OC= 且 ,则四边形ABCD是平行四边形。

  3、下列条件中,能够判断一个四边形是平行四边形的是( )

  (A)一组对角相等; (B)对角线相等;

  (C)两条邻边相等; (D)对角线互相平分。

  创新练习

  已知,如图,平行四边形ABCD的AC和BD相交于O点,经过O点的直线交BC和AD于E、F,求证:四边形BEDF是平行四边形。(用两种方法)

  达标练习

  1、已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F。求证:四边形AECF是平行四边形。

  2、已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,M、N分别是OA、OC的中点,求证:BM∥DN,且BM=DN 。

  综合应用练习

  1、下列条件中,能做出平行四边形的是( )

  (A)两边分别是4和5,一对角线为10;

  (B)一边为4,两条对角线分别为2和5;

  (C)一角为600,过此角的对角线为3,一边为4;

  (D)两条对角线分别为3和5,他们所夹的锐角为450。

  推荐作业

  1、熟记“判定定理3”;

  2、完成《练习卷》;

  3、预习:

  (1)“平行四边形的判定定理4”的内容 是什么?

  (2)怎样证明?还有没有其它证明方法?

  (3)例4、例5还有哪些证明方法?

  平行四边形的判定教学设计 12

  教学目的

  1.使学生掌握用平行四边形的定义判定一个四边形是 平行四边形;

  2.理解并掌握用二组对边分别相等的四边形是平行四 边形

  3.能运这两种方法来证明一个四边形是平行四边形。

  教学重点和难点

  重点:平行四边形的判定定理;

  难点:掌握平行四边形的性 质和判定的区别及熟练应用。

  教学过程

  (一)复习提问:

  1. 什么 叫平行四边形 ?平行四边形有什么性质?(学生口答,教师板书)

  2. 将 以上的性质定理,分别用命题形式 叙述出来。(如果……那么……)

  根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平 行四边形性质定理的.逆命题是否成立?

  (二)新课

  一.平行四边形的判定:

  方法一(定义法):两组对边分别平行的四边形的平边形。

  几何语言表达定义法:

  ∵AB∥C D,AD∥BC,∴四边形ABCD是平行四边形

  解析:一个四边形只要其两组对边 分别互相平行,

  则可判定这个四边形是一个平行四边形。

  活动:用做好的纸条拼成一个四边形,其中强调两组对边分别相等。

  方法二:两组对边分别相等的四边形是平行四边形。

  设问:这个命题的前提和结论是什么?

  已知:四边形ABCD中,AB=CD,AD=BC

  求 证:四边ABCD是平行四边形。

  分析:判定平行四边形的依据目前只有定义,也就是须证明两组对边分别平行,当然是借助第三条直线证明角等。连结BD。易 证三角形全等。(见图1)

  板书证明过程。

  小结:用几何语言 表达用定义法和刚才证明为正确的方法证明一个四边形是平行四边形的方法为:

  判定一:二组对边分别相等的四边形是平行四边形

  ∵AB=CD,AD=BC, ∴四边形A BCD是平行四边形

  练习:课本P103练习题第1题。

  例题讲解:

  例1 已知:如图3,E、F分别为平行四边形ABCD两边AD、BC的中点,连结BE、DF。

  求证:

  分析:由我们学过平行四边形的性质中,对角相 等,得若证明四边形EBFD为平行四边形,便可得到 ,哪么如何证明该四边形为平行边形呢?可通过证 明ΔABE≌ΔCDF得BE=DF;由AD=BC ,E、F分别为AD和BC的中点得ED=FB。

  练习:2. 已知如 图7, E、F、G、H分别是平行四边形ABCD的边AB、BC、CD、DA上的点,且AE=CG,BF=DH。

  求证:四边 形EFGH是平行四边形。

  平行四边形的判定教学设计 13

  一、教学目标

  【知识与技能】

  通过平行四边形的性质,理解并探索并掌握平行四边形的判定条件,并能根据条件判定平行四边形。

  【过程与方法】

  经历平行四边形判别条件的探索过程,逐步掌握平行四边形判定的基本方法;在与他人交流的过程中,能合理清晰地表达自己的思维过程。

  【情感态度与价值观】

  主动参与探索的活动中,发展合情推理意识、主动探究的习惯,激发学习数学的热情和兴趣。

  二、教学重难点

  【重点】平行四边形的判定方法。

  【难点】平行四边形判定方法的应用。

  三、教学过程

  (一)导入新课

  出示下图:学生观察下图,并提出下列问题。

  提问:1.上图是什么图形呢?回忆平行四边形的定义,并从边、角、对角线、对称性四个角度回忆平行四边形的性质?

  2.我们可以说怎么样的一个图形是平行四边形呢?除定义之外还有没有其它的方法来判定一个四边形是平行四边形呢?

  (二)生成新知

  通过前面的学习,我们知道,平行四边形的对边相等,对角相等,对角线互相平分。那么反过来,对边相等或对角线互相平分的四边形是不是平行四边形呢?下面我们就来验证一下。

  实验一:取两长两短的四根木条用小钉绞和在一起,做成一个四边形,使等长的木条成为对边。转动这个四边形,使它形状改变,在图形变化的过程中,它是什么图形呢?体制都是平行四边形吗?

  实验二:取两根长短不一的细木条,将它们的中点重叠,并用小钉钉在一起,用橡皮筋连接木条的顶点,做成一个四边形。转动两根木条,这个四边形是什么图形呢?一直是一个平行四边形吗?

  下面我们分组进行实验,一前后桌为一组的小组进行分组讨论,十分钟的讨论时间,小组需要的结合图形回答下列问题

  提问1:你能写出两个实验中的已知条件和求证条件吗?

  提问2:根据你写的已知条件,你能得到求证的条件吗?

  提问3:通过上面的两个问题,最后你得到什么结论呢?

  引导学生总结归纳出结论:

  两组对边分别相等的四边形为平行四边形;

  两组对角线分别相等的.四边形为平行四边形;

  对角线互相平分的四边形是平行四边形。

  出示例题,通过对角线互相平分的四边形的平行四边形的是平行四边形为例,讲解并验证:

  如图所示,在四边形ABCD中,AC,BD相交于点O,且OA=OC,OB=OD。求证:四边形ABCD是平行四边形。

  引导学生总结归纳出具体解题步骤:

  (三)应用新知

  1.在平行四边形ABCD中,AC、BD相交于点O。

  (1)若AD=8cm,AB=4cm,那么当BC=_________cm,CD=________cm时,四边形ABCD为平行四边形;

  (2)若AC=10cm,BD=8cm,那么当AO=________cm,DO=________cm时,四边形ABCD为平行四边形。

  (四)小结作业

  小结:通过这节课的学习,你有什么收获?你对今天的学习还有什么疑问吗?

  作业:想一想,平行四边形还有哪些性质?这些性质定理的逆命题都可以证明是平行四边形吗?

  平行四边形的判定教学设计 14

  教学目标

  知识技能目标

  1.运用类比的方法,通过学生的合作探究,得出平行四边形的判定方法.

  2.理解平行四 边形的这两种判定方法,并学会简单运用.

  过程与方法目标

  1.经历平行四边行判别条的探索过程,在有关活动中发展学生的合情推理意识.

  2 .在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力.

  情感态度价值观目标

  通过平行四边形判别条的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情.

  教学重点:

  平行四边形判定方法的探究、运用.

  教学难点:

  对平行四边形判定方法的探究以及平行四边形的性质和判定的综合运用.

  教学过程

  第一环节 复习引入:

  ( 3分钟, 教师提出问题1,2,由学生独立思考,并口答得出定义正反两方面的作用,出平行四边形的其他几条性质.)

  问题1(多媒体展 示问题)

  1.平行四边形的定义是什么?它有什么作用?

  2.平 行四边形还有哪些性质?

  问题2

  有一块平行四边形的玻璃块,假如不小心碰碎了一部分,聪明的技师拿着细绳很快将原的平行四边形画了出,你知道他用的是什么方法吗?

  第二环节 探索活动(12分钟,学生动手探究,小组合作)

  活动1:

  工具:两根长度相等的笔,

  两条平行线(可利用横格线).

  动手:请利用两根长度相等的笔和两条平行线,摆出以笔顶端为顶点的平行四边形吗?

  思考1.1:你能说明你所摆出的四边形是平行四边形吗?

  思考1.2:以上活动事实,能用字语言表达吗?

  目的:

  得出平行四边形 的一个性质:一组对边平行且相等的四边形是平行四边形.

  活动2

  工具:两根不同长度的细纸条.

  动手:能否用这两根细纸条在平面上

  摆出平行四边形?

  思考2.1:你能说明你们摆出的四边形是平行四边形吗?

  思考2.2:以上活动事实,能用字语言表达吗?

  目的:

  得出平行四边形的性质:对角线互相平分的四边形是平行四边形

  第三环节 巩固练习(20分钟,学生思考讨论再各自画图,画好后互相交流画法,教师巡回检查.对个别学生稍加点拨)

  随堂练习:

  1.已知:在平行四边形ABCD 中,点E、F在对角线AC上,并且OE=OF.

  (1)OA与OC,OB与OD相等吗?

  (2)四边形BFDE是平行四边形吗?

  (3)若点E,F在OA,OC的中点上,你能解决上述问题吗?

  2.再回到前问题:同学们想想看,有没有办法把原的平行四边形重新画出?

  (让学生思考讨论,再各自画图,画好后互相 交流画法,教师巡回检查.对个别 学生稍加点拨,最后请学生回答画图方法)

  学生想到的'画法有:

  (1)分别过A,C作BC,BA的平行线,两平行线相交于D;

  (2)分别以A,C为圆心,以BC, BA的长为半径画弧,两弧相交于D,连接AD,CD;

  (3)这一种方法学生不易想到,即为平行四边形对角线的特性,引导学生得出连线AC,取AC的中点O,再连接BO,并延长BO到D,使BO=DO,连接AD,CD.

  第四环节 小结:(4分钟,学生回答问题)

  师生共同小结,主要围绕下列几个问题:

  (1)判定一个四边形是平行四边形的方法有哪几种?这些方法是从什么角度去考虑的?

  (2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发?

  (3)类比、观察、拼图、实验等都是学习数学、发现结论的常用方法.

  第五环节 布置 作业:

  B、C组(中等生和后三分之一生)本104页习题4.3第1题、第2题

  A组(优等生):① 对于随堂练习题,若将G,H分别在OB ,OD上移动至与B,D重合,E,F分别在OA,OC上移动,使AE=CF(如图),则结论还成立吗?

  ② 对于随堂练习题,若E,F继续移动至OA,OC的延长线上,仍使AE=CF(如图),则结论还成立吗?

【平行四边形的判定教学设计】相关文章:

《菱形的判定》教学设计04-30

《平行四边形判定》教学反思05-06

《平行四边形的判定(2)》教学反思05-07

《平行四边形判定》教学反思范文10-11

平行四边形的判定(一)教学反思04-28

《平行四边形判定》教学反思7篇05-05

矩形的判定教学反思10-08

《切线判定》教学反思08-03

菱形的判定教学反思05-06