- 相关推荐
精品教案及配套反思--平面图形的密铺
5.1四边形(3) 陈建华 一、教学目标: 1、了解正多边形的概念 2.理解只有正三角形,正方形,正六边形这三种正多边形能单独镶嵌平面 3. 会运用正多边形形成简单的平面镶嵌设计 二、重点和难点 重点:本节教学的重点是用正多边形镶嵌平面。 难点:例3较为复杂,要求学生有较高的想象能力,是本节教学的难点。 三、教学过程 一)创设情景,引入课题 1.展示生活中的美丽图形镶嵌,回顾平面图形镶嵌的含义及相关知识. 设问:上述图形的拼接有何特点?-----引出平面图形的镶嵌概念 平面图形的镶嵌:用形状,大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙,不重叠的铺成一片,这就是平面图形的密铺 (平面图形的镶嵌) 提出问题:怎样的平面图形方能进行镶嵌呢?引出课题 二)实验验证,探索规律 1.展示生活图片,让学生初步总结出能进行镶嵌的平面图形大多是正三角形,正方形,正六边形等,在此基础上老师可引出正多边形的定义及相关知识. 师:我们知道正三角形,正方形是特殊的多边形.那么这些图形中的边和角分别有什么共同的特征? 生:各边相等,各内角也都相等. 师:我们把各边相等,各内角也相等的多边形叫做正多边形. 比如:边数为五的正多边形叫正五边形; 边数为六的正多边形叫正六边形.(展示图形让学生直观观察) 做一做:1;2(生完成) 师:正多边形具有匀称,美观的性质,故常应用于图案设计,今天我们就着重学习正多边形在平面镶嵌中的应用.展示图片如下: 合作学习:分别用若干个全等的正三角形,正方形,正五边形,正六边形,正八边形的纸片,在一张桌面上尝试镶嵌平面,你能发现这几种正多边形哪些能单独镶嵌平面,哪些不能?并说明理由.(分组进行,并由各组选派代表汇报本组的实验结果和对原因的分析.猜测学生在表述推理过程时可能会不严密或条理不清,老故师对学生的实验结果要作认真点评,可提示学生从正多边形的内角度数与其边数之间的关系去思考) 说明:事实上,如果用正多边形来镶嵌平面,那么共顶点的各个角之和必须等于3600 而正多边形的内角度数=(1-2/n)×1800(n为边数),不难发现,内角度数会随着边数的增大而增大. ∵n≥3,∴正多边形的最小内角为600, 当n=3,4,6时,内角的度数分别为600,900,1200,显然都是360的约数; 当n=5时,内角的度数为1080,不是360的约数, 当n≥7时,内角的度数大于1200,而小于1800,而3600=1200×3,故在120~180的范围内,360不存在除120外的其它约数,亦即当n≥7时,正多边形的内角度数都不可能是360的约数. 所以得到结论:能单独用来镶嵌平面的正多边形只有3种,即正三角形,正方形,正六边形. 思考:全等的三角形,全等的四边形能分别单独镶嵌平面吗?(显然能.让学生简单口述理由即可) 做一做:1;2 三)综合应用,拓展延伸 刚才我们探索了正多边形单独镶嵌平面的问题,那么如果用多种正多边形镶嵌平面,这样能镶嵌平面的正多边形组合就比较多种了,展示图片. 范例分析:例3用边长相等的正八边形和正方形能镶嵌平面吗?请说明理由,如果能,画出镶嵌图(只要画出示意图) 分析:1)抓住关键点:决定正多边形能否镶嵌平面的关键是它的内角度数,所以首先要解决的是正方形和正八边形的内角度数各是多少? 2)如果用正八边形和正方形能镶嵌平面,那么其共顶点处的各角的度数和应等于3600,于是问题就转化为能否找到正整数n和m,使135n+90m=360,接着先让学生通过试值法,确定n和m的值.然后老师可再采用一般推理法给出验证. m=4-3n/2, ∵m0 , ∴ n8/3, 又∵m为整数, ∴n=2,m=1 3)最后还要考虑边方面的要求,正方形与正八边形的边长必须满足什么条件?(相等) 1课内练习: 2探究活动 3制作:利用镶嵌多边形构造一个“基本单位”,发挥你的想象用这个“基本单位”制作一盒精美的拼图互赠同学。 四)小结和布置作业 小结:学生自己归纳 作业:作业本及课后作业题 配套反思 密铺是新课程后的一个新内容,考试又考得不多,因此平时关注的比较少。诚然,我们都知道一般三角形、四边形可以密铺,正六边形可以密铺,除此之外的正多边形不能密铺一般都是通过计算具体度数然后看是否能拼成360,如正八边形每个角135度,单独不能密铺。 学生的一一个问题让我深思,除正六边形外其它正多边形的内角能在拼接点处拼出360度,就能单独密铺。这个问题促动我深思,能否寻找n>6的正多边形不能密铺的一般的数学解释呢? 于是我在课堂上立刻叫学生讨论,我班有13位学生参加奥数辅导,学生的思维比较活跃我觉得学生应该有能力解决这个问题。通过热烈的交流与探讨,王擎硕同学提出了自己的看法。假设正n边形能单独密铺且由k个角拼在一起,则,化简得k=2n/(n-2) (其中n,k为整数),然后把n=3,4,5,6…..代入进行说明。我强调现在是研究n>6的正多边形能否单独密铺,你可否将k=2n/(n-2) 和n>6结合起来说明呢?王同学黙然。我提示k为整数, 2n/(n-2)为分数,其实问题就转化为n取何值时k为整数,这种问题的研究方法一般是将整部、分部进行分离。于是,化简得 k=2+4/(n-2),在n>6的情况下k为分数,所以不能单独密铺。铃声已经响了一会儿,但学生脸上写着认真与执着,我不仅为学生强烈的求知欲望所感动。我想在每堂课中教师能敏锐地捕捉学生生成的问题并及时予以解决,日积月累的话不知能为学生解决多少问题呢?其实教书不为图什么,只为对得起学生,不要有愧自己的良心。【教案及配套反思--平面图形的密铺】相关文章:
《密铺》教学反思(通用10篇)05-31
《密铺》教学反思(通用9篇)10-17
《平面图形的认识》教学反思05-02
《认识平面图形》教学反思(通用7篇)02-24
小学数学教案:平面图形的认识04-12
《认识平面图形》教案设计(通用10篇)12-29
北京版五年级数学上册教案设计《密铺》01-17
中班数学《图形多多》教案(附反思)11-26
中班数学《图形的家》教案(附反思)11-26
中班数学教案:图形分类教案及教学反思03-23