- 相关推荐
《三角形的内角和》优质教案(精选15篇)
作为一位兢兢业业的人民教师,通常会被要求编写教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么问题来了,教案应该怎么写?以下是小编帮大家整理的《三角形的内角和》优质教案,希望能够帮助到大家。
《三角形的内角和》优质教案 1
【教学目标】
1.学生动手操作,通过量、剪、拼、折的方法,探索并发现"三角形内角和等于180度"的规律。
2.在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。
3.体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。
【教学重点】
探究发现和验证"三角形的内角和为180度"的规律。
【教学难点】
理解并掌握三角形的内角和是180度。
【教具准备】
PPT课件、三角尺、各类三角形、长方形、正方形。
【学生准备】
各类三角形、长方形、正方形、量角器、剪刀等。
【教学过程】
口算训练(出示口算题)
训练学生口算的速度与正确率。
一、谜语导入
(出示谜语)
请画出你猜到的图形。谁来公布谜底?
同桌互相看一看,你们画出的三角形一样吗?
谁来说说,你画出的是什么三角形?(学生汇报)
(1)锐角三角形,(锐角三角形中有几个锐角?)
(2)直角三角形,(直角三角形中可以有两个直角吗?)
(3)钝角三角形,(钝角三角形中可以有两个钝角吗?)
看来,在一个三角形中,只能有一个直角或一个钝角,为什么不能有两个直角或两个钝角呢?三角形的三个角究竟存在什么奥秘呢?这节课,我们一起来学习"三角形的内角和。"(板书课题:三角形的内角和)
看到这个课题,你有什么疑问吗?
(1)什么是内角?有没有同学知道?
内:里面,三角形里面的角。
三角形有几个内角呢?请指出你画的三角形的内角,并分别标上∠1、∠2、∠3.
(2)谁还有疑问?什么是内角和?谁来解释?(三个内角度数的和)。
(3)大胆猜测一下,三角形的内角和是多少度呢?
【设计意图】
创设数学化的情境。学生用已经学的三角形的特征只能解释"不能是这样",而不能解释"为什么不能是这样".这样引入问题恰好可以利用学生的这种认知冲突,激发学生的学习兴趣。
二、探究新知
有猜想就要有验证,我们一起来探究用什么方法能知道三角形的内角和呢?
1、确定研究范围
先请大家想一想,研究三角形的内角和,是不是应该包括所用的三角形?
只研究你画出的那一个三角形,行吗?
那就随便画,挨个研究吧?(太麻烦了)
怎么办?请你想个办法吧。
分类研究:锐角三角形,直角三角形,钝角三角形(贴图)
2、探究三角形的内角和
思考一下:你准备用什么方法探究三角形的内角和呢?
小组合作:从你的学具袋中,任选一个三角形,来探究三角形的内角和是多少度?
小组汇报:
(1)量一量:把三角形三个内角的度数相加。
直接测量的方法挺好,虽然测量有误差,但我们知道了三角形的内角和在180°左右。究竟是不是一定就是180°呢?哪个小组还有不同的`方法?
(2)拼一拼:把三角形的三个内角剪下来,拼成了一个平角。
能想到这种剪一剪拼一拼的方法,真不简单。三个角拼在一起,看起来像个平角,究竟是不是平角呢?谁还有别的方法?
(3)折一折:把三角形的三个角折下来,拼成了一个平角。
这种方法真了不起,能借助平角的度数来推想三角形内角和是180°。
总结:同学们动脑思考,动手操作,运用不同的方法来验证三角形的内角和。这三种方法都很好,但在操作过程中,难免会有误差,不太有说服力。我们能不能借助学过的图形,更科学更准确的来验证三角形的内角和?
3、演绎推理的方法。
正方形四个角都是直角,正方形内角和是多少度?
你能借助正方形创造出三角形吗?(对角折)
把正方形分成了两个完全一样的直角三角形,每个直角三角形的内角和:360°÷2=180°
再来看看长方形:沿对角线折一折,分成了两个完全一样的直角三角形,内角和:360°÷2=180°
这种方法避免了在剪拼过程中操作出现的误差,举例验证,你发现了什么?
通过验证,知道了直角三角形的内角和是180度。
你能把锐角三角形变成直角三角形吗?
把锐角三角形沿高对折,分成了两个直角三角形。
一个直角三角形的内角和是180°,那么这个锐角三角形的内角和就是180°×2=360°了,对吗?(360-180=180°)
通过计算,我们知道了这个锐角三角形的内角和是180°,那么所有的锐角三角形的内角和都是180°吗?你是怎么知道的?
通过刚才的计算,你发现了什么?(锐角三角形内角和180°)
钝角三角形的内角和,你们会验证吗?谁来说说你的想法?180×2-90-90=180°
通过验证,你又发现了什么?(钝角三角形内角和180°)
4、总结
通过分类验证,我们发现:直角180,锐角180,钝角180,也就是说:三角形的内角和是180°。也验证了我们的猜想是正确的。(板书)
5、想一想,下面三角形的内角和是多少度?(小--大)
你有什么新发现?(三角形的内角和与它的大小,形状没有关系。)
【设计意图】
为了满足学生的探究欲望,发挥学生的主观能动性,通过独立探究和组内交流,实现对多种方法的体验和感悟。学生通过小组合作的方式学到方法,分享经验,更重要的是领悟到科学研究问题的方法。就学生的发展而言,探究的过程比探究获得的结论更有价值。
三、自主练习
1、在一个三角形中,如果想求一个角的度数,至少得知道几个角的度数呢?(2个)那我们就试一试,挑战第一关。(两道题)
2、算得真快!如果只知道一个角的度数,还能求出未知角的度数吗?挑战第二关。(三道题)
3、说得真清楚,如果一个角的度数也不知道,你还能求出未知角的度数吗?挑战第三关。(一道题)
师:同学们真了不起,从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,都能正确求出未知角的度数。
4、学无止境,课下,请你利用三角形的内角和,探究一下四边形、五边形、六边形的内角和各是多少度?
【设计意图】
练习由浅入深,层层递进。从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,要求学生求出未知角的的度数,梯度训练,拓展思维。
四、课堂总结
同学们,回想一下,这节课我们学习了什么?通过这节课的学习,你有哪些收获呢?
真了不起,同学们不仅学到了知识,还掌握了学习的方法。"在数学的天地里,重要的不是我们知道什么,而是我们怎么知道的",在这节课上,重要的不是我们知道了三角形的内角和是180°,而是我们通过猜测,一步一步验证,得到这个规律的过程。
课后反思
《三角形的内角和》是五四制青岛版四年级上册第四单元的信息窗二,本节课是在学生学习了与三角形有关的概念、边、角之间的关系的基础上,让学生动手操作,通过一系列活动得出"三角形的内角和等于180°".
本着"学贵在思,思源于疑"的思想,这节课我不断创设问题情境,让学生去猜想、去探究、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念。"问题的提出往往比解答问题更重要",其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是只是"知其然而不知其所以然".
为此,我设计了大量的操作活动:画一画、量一量、折一折、拼一拼等,我没有限定了具体的操作环节。在操作活动中,老师有"扶"有"放".做到了"扶"而不死,"伴"而有度,"放"而不乱。利用课件演示,更直观的展示了活动过程,生动又形象,吸引学生的注意力。使学生感受到每种活动的特点,这对他认识能力的提高是有帮助的。
最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,为了强化学生对这节课的掌握,从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,要求学生求出未知角的的度数,层级练习,步步加深,梯度训练。
教学是遗憾的艺术。当然本节课的教学中,存在许多不尽如意之处:
1、让学生养成良好的学具运用习惯,特别是小组学生在合作操作时,应有效指导,对学生及时评价,激励表扬,调动学生学习的积极性与主动性。
2、学生在介绍剪拼的方法时,可以让介绍的学生先上台演示是如何把内角拼在一起,这样学生在动手操作的时候就可以节省时间。
3、在做练习时,为了赶时间,题出现的频率较快,留给学生计算思考的时间不足,可能只照顾到好学生的进程,没有关注全体学生,今后应注意这一点。
教学是一门艺术,上一节课容易,上好一节课谈何容易,在今后的课堂教学中,只有勤学、多练,才能更好的为学生的学习和成长服务,让自己的人生舞台绽放光彩。
《三角形的内角和》优质教案 2
教学目标:
1、知识目标:通过测量、拼、折叠等方法探索和发现三角形的内角和等于180°;已知三角形两个角的度数,会求出第三个角的度数。
2、能力目标:通过讨论争辩、操作、推理等培养学生的思维能力和解决问题的能力;培养学生的空间观念,使学生的创新能力得到发展;使学生初步掌握由特殊到一般的逻辑思辨方法和先猜想后验证的研究问题的方法。
3、情感目标:培养学生的合作精神和探索精神;培养学生运用数学的意识。
教学重、难点:
掌握三角形的内角和是180°。验证三角形的内角和是180°。
学生分析:
在上学期学生已经掌握了角的分类及度量问题。在本课之前,学生又研究了三角形的分类。这些都为进一步研究三角形内角和作了知识储备和心理准备,为本课内容的教学作了铺垫。三角形的内角和是三角形的一个重要性质。它有助于理解三角形的三个内角之间的关系,是进一步学习、研究几何问题的基础。
教学流程:
一、创设情境,激发兴趣
(课件出示:两个三角形争论,大的对小的说,我的内角和比你大。)
(学生小声议论着,争论着。)
师:同学们,你们能不能帮助大三角形和小三角形解决这个问题啊?
生:可以把这两个三角形的内角比一比。
生:它们不是一个角在比较,可怎么比呀?
生:我们先画出一个大三角形,再画一个小三角形。分别量一量这两个三角形三个内角的度数,这样就知道谁的内角和大,谁的内角和小啦。
师:那好,我们今天就来研究“三角形的内角和”。(板书课题。)
【设计意图:通过多媒体出示,引起学生兴趣,使学生想探索大、小三角形的内角和到底谁大?】
二、动手操作,探索新知
1、初步感知。
师让学生分别画出不同形状的三角形。学生用量角器测量三角形三个内角的度数,并做着记录,并统一填表格。(表格略。)
生汇报测量的结果:内角和约等于180°。
师启发学生发现三角形的内角和180°。(师板书:三角形的内角和是180°。)
【设计意图:通过这种方法可以得出准确的结论,也容易被学生理解和接受。可能出现问题:用测量的方法得到的结果不是刚好180°。使学生明白是因为测量存在误差的缘故。】
2、用拼角法验证。
师:刚才同学们发现,三角形的内角和约等于180°,那么到底是不是这样呢?
生:我们手里有一些三角形,可以动手拼一拼。
生:还可以剪一剪。
师:那同学们就开始吧!
(学生动手进行拼、剪、折等方法,检验三角形内角和的度数。)
生:锐角三角形的内角可以拼成一个平角。因为平角是180°,所以锐角三角形的三个内角和是180°。
生:我把一个直角三角形的三个内角剪下来,拼成了一个平角,所以直角三角形的三个内角和也是180°。
生:钝角三角形的内角和也是180°。
(师板书:三角形的内角和是180°。)
【设计意图:使学生明确,因为全面研究了直角三角形、锐角三角形和钝角三角形这三类三角形的内角和,所以可以得出“三角形的内角和等于180°”这一结论。通过这些过程使学生明白:探究问题有不同的方法、途径,并且方法之间可以互为验证,达到结论的统一,从而使学生明白获得探究问题的方法比获得结论更为重要。】
三、巩固新知,拓展应用
1.出示题目:在三角形中,已知∠1=78°,∠2=44°,求∠3=的度数。
2.已知∠1、∠2、∠3是三角形的三个内角,猜一猜下面的三角形各是什么三角形?(图略,分别是锐角、直角、钝角三角形。)学生猜后,教师抽去遮盖的纸,进行验证。
通过以上的练习使学生对三角形内角和的应用有个初步认识,并积累解决问题的经验。
3.师:(出示一个大三角形)它的内角和是多少度?
生:180 °。
师:(出示一个很小的三角形)它的内角和是多少度?
生:180 °。
师:(把大三角形平均分成两份。指均分后的一个小三角形)它的内角和是多少度?(生有的答90°,有的答180°。)
师:哪个对?为什么?
生:180°对,因为它还是一个三角形。
师:每个小三角形的度数是180°,那么这样的两个小三角形拼成一个大三角形,内角和是多少度?(这时学生的答案又出现了180°和360°两种。)师:究竟谁对呢?(学生脸上露出疑问。经过一番激烈的讨论探究后,学生开始举手回答。)
生:180°。因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180°。
生:我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,比原来两个三角形少180°,所以大三角形的`内角和还是180°,不是360°。
师:你真聪明。(课件演示。)
四、小结
师:同学们,你们今天学了“三角形的内角和是180°”的新知识,现在能来帮助大、小三角形进行评判了吧?(生答能。)
师:说一说本节课的收获。这节课你掌握了哪些知识?学会了哪些研究问题的方法?
五、探究性作业
求下面几个多边形的内角和。(图形略。)
【设计意图:通过这样的练习,培养学生思维的灵活性、多样性,使不同层次的学生得到不同的发展,体现教学的层次性。】
反思:
1、重视动手操作,让学生在探究中收获知识。《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”本节课通过量、折、剪、拼等多种活动,使学生主动探究,找到新旧知识的联系,得出研究问题的结论,有利于学生培养空间观念和动手操作能力。
2、小组合作学习是新课程倡导的学习方式,有利于培养学生的合作意识、探索能力、团队精神。我们要从平时抓起,在平常的课堂中开展小组合作学习,可以是前后四人为一组,深入探究合作学习的方法和途径。这样学生学习方式的转变才能落到实处,才不会变成某些公开课的摆设
《三角形的内角和》优质教案 3
教学内容
人教版小学数学第八册第五单元第85页例5
任务分析
教材分析: 《三角形的内角和》是义务教育课程标准实验教科书(数学)四年级下册第五单元《三角形》中的一个教学内容。这部分内容是在学生学习了角的度量,角的分类,三角形的认识,三角形的分类的基上进行教学的。它是三角形的一个重要性质,有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。教材通过实际操作,引导学生用实验的方法探索并归纳出这一规律,即任意一个三角形,它的内角和都是180度。教材在编写上也深刻的体现出了让学生探究的特点,通过动手操作探究发现三角形内角和为180度。教学内容的核心思想体现在让学生经历猜想—验证—结论的过程,来认识和体验三角形内角和的特点。
学情分析:通过前面的学习,学生已经掌握了三角形的一些基础知识,会用工具量角、画角,具备了探索三角形内角和的知识与基础技能。在四年级上册《角的度量》的学习中,学生有接触到两把三角尺的内角和是180°;并在相关的补充习题和数学练习册的练习中,也有要求测量任意三角形的三个内角的度数并求出它们的和的练习,很多学生已经知道了三角形的内角和是180°。但是要真正理解和掌握需要进行验证,因此,学生在这节课上的主要任务是通过实验操作验证三角形的内角和是180°。
教学目标
1、通过实验、操作、推理归纳出三角形内角和是180°。
2、能运用三角形的内角和是180°这一规律,求三角形未知角的度数并运用解决实际生活问题。
3、通过拼摆,感受数学的转化思想。
教学重点
探究发现和验证“三角形的内角和180度”。
教学难点
验证三角形的内角和是180度。
教学准备
多媒体课件,锐角三角形、直角三角形、钝角三角形,剪刀,量角器等。
教学过程
一、复习旧知,学习铺垫
1、一个平角是多少度?等于几个直角?
2、如下图,已经∠ 1=35°,∠2=78°,求∠3是多少度?
二、探究新知,理解规律
1、说明三角形的三个内角和
说出手中三角形的类型(锐角三角形,直角三角形,钝角三角形)并说出三角形有几个角?
师(指出):三角形的这三个角叫做三角形的三个内角,这三个内角的度数和叫做三角形的内角和。
板书课题:“三角形的内角和”。
揭示课题:今天我们一起来探究三角形的内角和有什么规律。
2、探究三角形的内角和规律
探究1:量一量,算一算
以小组为单位,用量角器计算出三种三角形的内角和各是多少度?
生讨论汇报,并引导学生发现:三角形的内角和接近180°。
师:三角形的内角和接近180°,那它到底与180° 有怎样的`关系呢?
学生预设:有学生可能会说出三角形的内角和就是180°,这时老师可以提问,为什么就是180°?我们要进行验证,你有什么办法呢?
探究2:摆一摆,拼一拼
引导:我们刚刚每个三角形都量了三次角,每一次度量都有误差,所以量出来的内角和有误差。能不能换一种方法减少度量的次数,减少误差呢?
生可能很难想到,可以提示学生:把三个内角拼成一个角就只要量一次角。让我们一起动手做一做
如图:
(1)
锐角的三个内角拼成了一个平角,引导学生说出:锐角三角形的内角和是180°.
(2)
让学生小组合作用同样的方法,发现:直角三角形的内角和也是180°.
(3)
让学生独立用同样的方法,发现:钝角三角形的内角和也是180°.
引导学生归纳:三角形的内角和是180°。
是不是所有的三角形的内角和都是180°呢? (是,因为这三类三角形包括了所有三角形。)
板书:三角形的内角和是180°
三、巩固练习,应用规律
1、在一个三角形中,∠1=140°,∠3=25°,你能求出∠2的度数吗?
学生独立完成,并说出原因:因为三角形的内角和是180°,也就是∠1+∠2+∠3=180°,借助图像
∠2 =180°-∠1-∠3 或 ∠2 =180°-(∠1+∠3)
= 180°-140°-25° =180°-(140°+25°)
=40°-25° =180°-165°
=15° =15°
2、一个等腰三角形的顶角是80°,它的两个底角各是多少度?
学生分析:因为等腰三角形的两个底角相等,又因为三角形的内角和是180°,所以
(180°-80°)÷2
=100°÷2
=50°
四、拓展练习,深化规律
1、求出下面各角的度数。
(1) (2)
2、判断
(1)三角形任意两个内角的和大于第三个角。( )
(2)锐角三角形任意两个内角的和大于直角。( )
(3)有一个角是60°的等腰三角形不一定是等边三角形。( )
3、下面是两块三角形的玻璃打碎后留下的残片,你知道它们原来各是什么三角形吗?
( ) ( )
五、课堂小结,分享提升
1、谈谈这节课你有什么收获?
2、课后思考题
三角形的内角和是180°,那长方形、正方形的内角和呢?(根据三角形的内角和是180°求,参考课本88页第12题,完成89页16题)
板书设计
《三角形的内角和》优质教案 4
一、教材简介:
本微课选自北京师范大学出版社初中数学七年级下册第四章《三角形》的第一节《认识三角形》的内容,学生在学习了“三角形的概念”之后,自然要想到“三角形的内角和”,因此本节微课起着承上启下的作用。教学内容是《三角形内角和》。
二、设计理念:
我在设计这一堂微课时,主要从七年级学生以形象思维为主,对新事物容易产生兴趣的特点出发,创设问题情景“在以前小学学习三角形的内角和的结论时,是通过撕、拼的方法直观得到的,你知道其中的依据吗?”来激发学生探究的欲望。然后通过老师借助Z+Z超级画板展示“三角形的内角和等于180°”的动画以及通过旋转和平移三角形的两个角到第三个角的方法,一方面让学生去发现问题,另一方面使学生通过多角度思考、分析、说理、操作加深学生对三角形内角和为180°的理解,从而突出和解决了本节课的重点,同时在教学中注重在直观操作的基础上进行简单的推理,使学生学会用一定的方式有条理地表达推理过程。在学生探究得出三角形的内角和等于180°之后,教师通过借助Z+Z超级画板拖动三角形的任意一个点,改变三角形的形状,动态显示了“三角形的内角和”始终等于180°的数据。加深对“三角形的内角和“的'理解。最后同过练习,检测学生对“三角形的内角和”的应用掌握程度,拓展学生视野,提高学生认识水平。
设计特色是力求通过Z+Z超级画板动画等多媒体教学手段,使抽象知识动态化,降低学生认知难度。以问题为导向,引导学生推断分析,锻炼学生逻辑思维。教学过程充分体现出以学生为主体,教师为主导的特点,启发引导学生通过多角度思考、分析、说理、操作的过程中主动地去获取知识,体验过程、感悟方法,以提高学生学习的有效性。
三、学情分析:
七年级的学生形象思维比较好,但空间思维比较差,注意力容易转移,需要教师结运用多媒体技术展示三角形内角和,因此本节课我展示“三角形的内角和”的动画给学生看,将思维的可视化展示给学生,使学生能保持较大的学习兴趣,从而努力培养学生的发现问题的能力、推理能力、有条理的表达能力、发展空间观念。
四、教学目标
知识与技能:通过观察、操作、想象、推理“三角形内角和等于180°”的活动过程,发展空间观念,推理能力和有条理地表达能力。
过程与方法:通过自主探究,结合具体实例,掌握三角形三个角和等于180°。
情感、态度价值观:在探究学习中体会数学的现实意义,培养学习数学的信心,体验解决问题方法的多样性。
五、教学重难点
教学重点:三角形的内角和。
教学难点:三角形的内角和。
六、教学用具
“三角形的内角和”动画、制作多媒体课件。
七、教学过程:
教学环节
教学内容
教学活动
设计意图
教师的组织和引导
学生活动
提出问题,自主探究
一、三角形内角和
展示书本P81页的做一做,提出问题:
1、在小学通过撕、拼方法得到三角形内角和等于180°,依据是什么?
2、展示“三角形内角和等于180°”动画。
3、引导学生利用“平行线的判定与性质”探究、推理、得出“三角形内角和等于180°”的结论
3、利用“三角形内角和”的动画,拖动三角形的任意点,用数据显示三角形的内角和等于180°。
阅读课本p81页,回忆小学通过撕、拼方法得到三角形内角和等于180°。
观看“三角形内角和等于180°”动画。
探究、想象、推理、得出结论。
观看动画,加深理解三角形内角和等于180°。
根据做一做,激发学生的探究欲望。
动画形象地呈现在学生眼前,直观操作与说理结合起来。
培养学生的推理能力和有条理地表达能力,发展空间观念。
效果检测,引领提升
练习
展示有梯度的课堂练习。
做练习
对所学知识加以运用和深化归纳总结,深化认知
总结拓展
总结本节知识点
归纳知识点
学会总结
板书设计
一、三角形三个内角和等于180°
教学反思:
该微课针对我校生源不是很好的实际情况和“三角形内角和”很难理解的特点,面向学生,聚焦学习过程,关注个性差异,采用问题导学、自主探究模式,聚焦知识点讲解,呈现教师如何用Z+Z超级画板软件引导学生学习,学生如何在教师的引导下自主学习的过程,充分体现教师的主导作用和学生的主体作用;针对七年级学生以形象思维为主、好奇心强的特点,充分发挥多媒体在学科中的运用,教师展示“三角形内角和”动画,让学生根据“平行线的判定和性质”获得“三角形内角和等于180°”的结论,体现思维过程。培养学生的推理能力和有条理地表达能力,发展空间观念。符合新课标倡导的探究性学习的理念。事实证明,符合学生的认知心理,达到了很好的效果。
《三角形的内角和》优质教案 5
教学内容:
课本第67页。
教学目标:
通过操作活动探索发现和验证“三角形的内角和是180度”的规律。
通过量一量、剪一剪、拼一拼,培养学生合作能力、动手实践能力和运用新知识解决问题的能力。
使学生体验数学学习的乐趣,激发学生主动学习数学的兴趣。教学重点:探索发现和验证三角形内角和是180度。教学难点:对不同探究方法的指导和学生对规律的应用。教学准备:课件,三角形,量角器。教学
一、复习旧知,引出课题。谁能说说它们分别是什么三角形?
预设:锐角三角形,直角三角形,钝角三角形。
请一位同学分别标出这些三角形的角,其余的同学在自己准备的三角形中标角。独立完成,集体订正。
其实这些角是三角形的内角,谁能大胆猜一猜三角形内角和是多少度?预设:360°,180°,90°…….今天我们一起来探究三角形内角和。板书课题:三角形内角和
二、探究新知
1、小组合作。
课件展示:活动要求(1)4人一组,每人任选一个三角形用你的方法验证三角形内角和。
(2)小组交流各自的验证方法和验证结果,评选出较好的验证方法并说明理由。(3)每组选派一名同学汇报。
预设:我们组选用的是量角法,依次测量出三角形内角和是170°,185°,180°…哪一组和这一组验证方法不同?
预设:我们是把三角形的3个角剪下来拼在一起发现得到一个平角因此得知三角形内角和是180°。
你能把你拼的过程给大家说详细一些吗?
预设:选出一个角,再选出一个角使得它的一边与前一个角的一边重合,剩下的角的一边和前一个角的另一条边重合,此时拼出一个平角因此三角形内角和是180°。
我发现你选用的是锐角三角形,那直角三角形,钝角三角形的内角和是怎样的?请同学们尝试用这种方法验证三角形内角和。
预设:直角三角形内角和是180°,钝角三角形内角和是180°。总结:通过撕(剪)拼法,我们验证任意三角形内角和是180°。
追问:同学们我有一个困惑刚才有部分同学通过测量角计算内角和为什么不是180°,问题出在哪里?
预设:测量角的方法不正确。预设:三角形做得不规范。
预设:测量过程中存在误差,导致不精确。
总结:撕(剪)拼法在验证三角形内角和精确性上优胜于量角法。还有没有同学想出不一样的验证方法呢?
预设1:课件展示折拼法,请一位同学说出具体的操作过程。剩下的同学仿照这种方法任选一个三角形验证三角形内角和。
预设2:同学上台展示操作过程,其余同学观察后并自行操作。
总结:
折拼法依然能验证任意三角形内角和是180°。看来解决数学问题的方法不是唯一的,希望同学们在今后的学习当中能多思,多想充分挖掘自己的.聪明才智。
三、知识运用,巩固练习。
请同学们独立完成下题。(每题10分共100分。)
1、如图∠1=140°,∠3=25°,∠2=(°)。
2、一个直角三角形,一个锐角是50°,另一个锐角是(°)。
3、一个顶角是50°的等腰三角形的底角是(°)。
4、等边三角形每个角是(°)。
5、等腰直角三角形的一个底角是(°)。
6、在一个三角形中,∠A=90°,∠B+∠C=(°)。
7、一个三角形中,有一个角是65°,另外的两个角可能是(°)和(°)。
8、某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全一样的玻璃,那么最省事的办法是带()去。为什么?
②③①
9、把下面这个三角形沿虚线剪成两个三角形,每个小三角形的内角和是多少度?
10、根据三角形内角和是180 °。你能求出下面四边形的内角和吗?
四、课后小结
请你谈谈本节课的收获。
五、板书设计
任意三角形内角和是180°。
《三角形的内角和》优质教案 6
教学要求
1.通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。
2.能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。
3.培养学生动手动脑及分析推理能力。
教学重点 三角形的内角和是180°的规律。
教学难点 使学生理解三角形的内角和是180°这一规律。
教学用具 每个学生准备锐角三角形、直角三角形、钝角三角形纸片各一张,量角器。
教学过程:
一、复习准备
1.三角形按角的不同可以分成哪几类?
2.一个平角是多少度?1个平角等于几个直角?
3.如图,已知∠1=35°,∠2=75°,求∠3的度数。
二、教学新课
1.投影出示一组三角形:(锐角三角形、钝角三角形、直角三角形)。三角形有几个角?老师指出:三角形的这三个角,就叫做三角形的三个内角。(板书:内角)
2.三角形三个内角的度数和叫做三角形的内角和。(板书课题:三角形的内角和)今天我们一起来研究三角形的'内角和有什么规律。
3.以小组为单位先画4个不同类型的三角形,利用手中的工具分别计算三角形三个内角的和各是多少度?
4.指名学生汇报各组度量和计算的结果。你有什么发现?
5.大家算出的三角形的内角和都接近180°,那么,三角形的内角和与180°究竟是怎样的关系呢?就让我们一起来动手实验研究,我们一定能弄清这个问题的。
6.刚才我们计算三角形的内角和都是先测量每个角的度数再相加的。在量每个内角度数时只要有一点误差,内角和就有误差了。我们能不能换一种方法,减少度量的次数呢?
提示学生,可以把三个内角拼成一个角,就只需测量一次了。
7.请拿出桌上的直角三角形纸片,想一想,怎样折可以把三个角拼在一起,试一试。
8.三个角拼在一起组成了一个什么角?我们可以得出什么结论?(直角三角形的内角和是180°)
9.拿一个锐角三角形纸片试试看,折的方法一样。再拿钝角三角形折折看,你发现了什么?(直角三角形和钝角三角形的内角和也是180°)
10.那么,我们能不能说所有三角形的内角和都是180°呢?为什么?(能,因为这三种三角形就包括了所有三角形)11.老师板书结论:三角形的内角和是180°。
12.一个三角形中如果知道了两个内角的度数,你能求出另一个角是多少度吗?怎样求?
13.出示教材85页做一做。让学生试做。
14.指名汇报怎样列式计算的。两种方法均可。
∠2=180°-140°-25°=15°
∠2=180°(140°+25°)=15°
三、巩固练习
1.88页第9题
这一题是不是只知道一个角的度数?另一个角是多少度,从哪看出来的?独立完成,集体订正。
直角三角形中的一个锐角还可以怎样算?
2、88页第10题
①等腰三角形有什么特点?(两底角相等)
②列式计算 180°-70°-70°=40°或
180°-(70°×2)=40°
2.88页第10题
①连接长方形、正方形一组对角顶点,把长方形、正方形分成两个什么图形?
②一个三角形的内角和是180°,两个三角形呢?
四、布置作业
《三角形的内角和》优质教案 7
(一)教材的地位和作用
《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是在学生学习了《三角形的特性》以及《三角形三边关系》,《三角形的分类》之后进行的,在此之后则是《图形的拼组》,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习,掌握三角形的内角和是180°这一规律具有重要意义。
(二)教学目标
基于以上对教材的分析以及对教学现状的思考,我从知识与技能,教学过程与方法,情感态度价值观三方面拟定了本节课的教学目标:
1。通过"量一量","算一算","拼一拼","折一折"的小组活动的方法,探索发现验证三角形内角和等于180°,并能应用这一知识解决一些简单问题。
2。通过把三角形的内角和转化为平角进行探究实验,渗透"转化"的数学思想。
3。通过数学活动使学生获得成功的体验,增强自信心。培养学生的创新意识,探索精神和实践能力。
(三)教学重,难点
因为学生已经掌握了三角形的概念,分类,熟悉了钝角,锐角,平角这些角的知识。对于三角形的内角和是多少度,学生并不陌生,也有提前预习的习惯,学生几乎都能回答出三角形的内角和是180°。在整个过程中学生要了解的是"内角"的概念,如何验证得出三角形的内角和是180°。因此本节课我提出的教学的重点是:验证三角形的内角和是180°。
二、说教法,学法
本节课主要是通过教师的精心引导和点拨,学生在小组中合作探索,通过量一量,折一折,撕一撕,画一画,选择不同的一种或者几种方法来验证三角形的内角和是180°。
因为《课程标准》明确指出:"要结合有关内容的教学,引导学生进行观察,操作,猜想,培养学生初步的思维能力"。四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作,主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从"猜测――验证"展开学习活动,让学生感受这种重要的数学思维方式。
三,说教学过程
我以引入,猜测,证实,深化和应用五个活动环节为主线,让学生通过自主探究学习进行数学的思考过程,积累数学活动经验。
引入
呈现情境:出示多个已学的平面图形,让学生认识什么是"内角"。( 把图形中相邻两边的夹角称为内角) 长方形有几个内角 (四个)它的内角有什么特点 (都是直角)这四个内角的和是多少 (360°)三角形有几个内角呢 从而引入课题。
【设计意图】
让学生整体感知三角形内角和的知识,这样的教学, 将三角形内角和置于平面图形内角和的大背景中, 拓展了三角形内角和的数学知识背景, 渗透数学知识之间的联系, 有效地避免了新知识的"横空出现"。
猜测
提出问题:长方形内角和是360°,那么三角形内角和是多少呢
【设计意图】
引导学生提出合理猜测:三角形的内角和是180°。
(三)验证
(1)量:请学生每人画一个自己喜欢的三角形,接着用量角器量一量,然后把这三个内角的度数加起来算一算,看看得出的三角形的内角和是多少度
(2)撕―拼:利用平角是180°这一特点,启发学生能否也把三角形的三个内角撕下来拼在一起,成为一个平角 请学生同桌合作,从学具中选出一个三角形,撕下来拼一拼。
(3)折—拼:把三角形的三个内角都向内折,把这三个内角拼组成一个平角,一个平角是180°,所以得出三角形的内角和是180°。
(4)画:根据长方形的内角和来验证三角形内角和是180°。
一个长方形有4个直角,每个直角90°,那么长方形的内角和就是360°,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180°。从长方形的内角和联想到直角三角形的内角和是180°。
【设计意图】
利用已经学过的知识构建新的数学知识, 这不仅有助于学生理解新的知识, 而且是一种非常重要的学习方法。在探索三角形内角和规律的教学中,注意引导学生将三角形内角和与平角,长方形四个内角的和等知识联系起来, 并使学生在新旧知识的连接点和新知识的生长点上把握好他们之间的内在联系。在整个探索过程中, 学生积极思考并大胆发言, 他们的创造性思维得到了充分发挥。
深化
质疑: 大小不同的三角形, 它们的内角和会是一样吗
观察:(指着黑板上两个大小不同但三个角对应相等的'三角形并说明原因,三角形变大了, 但角的大小没有变。)
结论: 角的两条边长了, 但角的大小不变。因为角的大小与边的长短无关。
实验: 教师先在黑板上固定小棒, 然后用活动角与小棒组成一个三角形, 教师手拿活动角的顶点处, 往下压, 形成一个新的三角形, 活动角在变大, 而另外两个角在变小。这样多次变化, 活动角越来越大, 而另外两个角越来越小。最后, 当活动角的两条边与小棒重合时。
结论:活动角就是一个平角180°, 另外两个角都是0°。
【设计意图】
小学生由于年龄小, 容易受图形或物体的外在形式的影响。教师主要是引导学生与角的有关知识联系起来,通过让学生观察利用"角的大小与边的长短无关"的旧知识来理解说明。
对于利用精巧的小教具的演示, 让学生通过观察,交流,想象, 充分感受三角形三个角之间的联系和变化, 感悟三角形内角和不变的原因。
(五)应用
1。基础练习:书本练习十四的习题9,求出三角形各个角的度数。
2。变式练习:一个三角形可能有两个直角吗 一个三角形可能有两个钝角吗 你能用今天所学的知识说明吗
3。(1)将两个完全一样的直角三角形拼成一个大三角形, 这个大三角形的内角和是多少
(2) 将一个大三角形分成两个小三角形, 这两个小三角形的内角和分别是多少
4。智力大挑战: 你能求出下面图形的内角和吗 书本练习十四的习题
【设计意图】
习题是沟通知识联系的有效手段。在本节课的四个层次的练习中, 能充分注意沟通知识之间的内在联系, 使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知, 构建自己的认知结构, 从而发展思维, 提高综合运用知识解决问题的能力。
第一题将三角形内角和知识与三角形特征结合起来,引导学生综合运用内角和知识和直角三角形,等边三角形等图形特征求三角形内角的度数。
第二题将三角形内角和知识与三角形的分类知识结合起来,引导学生运用三角形内角和的知识去解释直角三角形,钝角三角形中角的特征, 较好地沟通了知识之间的联系。
第三题通过两个三角形的分与合的过程,使学生感受此过程中三角内角的 变化情况, 进一步理解三角形内角和的知识。
第四题是对三角形内角和知识的进一步拓展, 引导学生进一步研究多边形的内角和。教学中, 学生能把这些多边形分成几个三角形, 将多边形内角和与三角形内角和联系起来,并逐步发现多边形内角和的规律, 以此促进学生对多边形内角和知识的整体构建。
《三角形的内角和》优质教案 8
本节微课视频是苏教版数学教科书四年级下册第78~79页的教学内容。在教学之前,学生已经掌握了角的概念、角的分类和角的测量;认识了三角形,知道三角形是由三条线段首尾相接围成的图形,有三个顶点、三条边和三个角。这些已经构成学生进一步学习的认知基础。《三角形的内角和》是三角形的一个重要性质。学生在学习四年级上册“角的度量”时,通过测量三角尺三个角的度数,知道三角尺三个角加起来的和是180度,再加上课前的预习,大部分的学生已经能得出结论:三角形的内角和是180度,只不过他们不清楚其中的道理,只是机械性的记忆。因此,本节课的重点不是结论,而是验证结论的过程。教材组织学生对不同形状、不同大小的三角形的内角和进行探索,通过转化、推理、比较、操作和验证,总结概括出“所有三角形的内角和都是180度”的规律,从而进一步发展学生的空间观念,提高学生的自主学习能力和推理能力。
下面就具体谈谈微课的`教学设计:
一、 教学目标
1、通过测量、转化、观察和比较等活动探索发现并验证“三角形的内角和是180度”的规律,并且能利用这一结论解决求三角形中未知角的度数等实际问题。
2、通过折一折、拼一拼和剪一剪等一系列的操作活动培养学生的联想意识和动手操作能力。体验验证结论的过程与方法,提高学生分析和解决问题的能力。
3、使学生通过操作的过程获得发现规律的喜悦,获得成就感,从而激发学生积极主动学习数学的兴趣。
二、 教学重点和难点
重点:让学生亲自验证并总结出三角形的内角和是180度的结论
难点:对不同验证方法的理解和掌握。
三、 教学过程
(一)质疑——发现问题,提出问题
出示学生熟悉的一副三角尺,让学生说说每块三角尺中各个内角的度数。试着计算每块三角尺的三个内角的度数加起来的和是多少度?
交流:不同三角尺的内角和都是一样的吗?三角尺的内角和有什么特征?
引导学生得出三角尺的三个内角的度数和是180度。
提问:三角尺的形状是什么三角形?三角尺的内角和是180度,我们还可以说成是什么?(得出结论:直角三角形的内角和是180度。)
你有什么办法验证这一结论呢?(动手操作,寻找答案)
方法一:拿出不同的直角三角形,分别测量三个内角的度数,再求和。(提示存在误差,但三个内角的和都在180度左右)
方法二:用两个相同的直角三角形拼成一个长方形,由于长方形的四个内角和是360度,因此能得出一个直角三角形的三个内角和是180度。
启发:直角三角形的内角和是180度,这一结论让你联想到了什么?你能提出什么新的数学问题呢?
引导:从直角三角形的内角和联想到所有三角形的内角和,提出问题:所有三角形的内角和都是180度吗?
(二)探究——分析问题,解决问题
出示三个三角形:直角三角形、锐角三角形和钝角三角形。
引导:直角三角形的内角和是180度了,由此我们联想到锐角三角形和钝角三角形的内角和也有可能是180度。
提问:你有什么办法来验证这一猜想呢?
拿出事先从课本第113页剪下来的3个三角形,动手操作,自主探索,发现规律。
方法一:可以像上面那样先测量每个三角形的三个内角的度数,再计算出它们的和,看看能发现什么规律。学生测量计算,教师巡视指导。
引导:测量时要尽量做到准确,测量是存在误差的,对于测量的不准的同学要重新测定和确认,计算出它们的和,发现其中的规律。
方法二:既然是求三角形的内角和,我们就可以想办法把三角形的3个内角拼在一起,看看拼成了什么角。那怎样才能把3个内角拼在一起呢?我们可以将三角形中的3个内角撕下来,再拼在一起,会发现拼成了一个平角,是180度。
方法三:把三角形的三个内角撕下来,虽然能将他们拼在一起,但是原有的三角形被破坏了。因此,我们还可以通过折一折的方法,把三个内角折过来拼在一起,同样会发现拼成一个平角,是180度。
方法四:将锐角三角形和钝角三角形分别分成两个直角三角形,利用直角三角形内角和是180度进行推理。180+180=360度,360-90-90=180度。
(三)归纳——获得结论
交流:回顾以上3个三角形的内角和的探索过程,你发现了什么规律?
总结:通过测量计算、拼一拼和折一折的方法,我们可以消除心中的问号,肯定得说出所有三角形的内角和都是180度这一结论。
(四)拓展——巩固练习
1、将一个大三角形剪成两个小三角形,每个小三角形的内角和是多少度?
2、在一个三角形中,根据两个内角的度数,求第三个内角的度数?
《三角形的内角和》优质教案 9
教学目标
通过猜想、验证,了解三角形的内角和是180度。在学习的过程中进一步激发学生探索数学规律的兴趣,初步感知计算多边形内角和的公式。
教学重难点
三角形的内角和
课前准备
电脑课件、学具卡片
教学活动
一、计算三角尺三个内角的和。
出示三角尺中的一个,提问:谁来说说三角尺上的三个角分别是多少度?
引导学生说出90度、60度、30度。
出示另一个三角尺,引导学生分别说出三个角的度数:90度、45度、45度。
提问:请同学们任选一个三角尺,算出他们三个角一共多少度?
学生计算后指名回答。
师:三角尺三个角的和是180度。
二、自主探索,解决问题
提问:是不是任一个三角形三个角的和都是180度呢?请同学们在自备本上
任画一个三角形,量出它们三个角分别是多少度,再求出它们的和,然后小组内交流。
学生小组活动,教师了解学生情况,个别同学加以辅导。
全班交流:让学生分别说出三个角的度数以及它们的和。
提问:你发现了什么?
:任何一个三角形三个角的和都是180度。利用三角形的这一性质,我们可以解决许多问题。
三、试一试
要求学生先计算,再用量角器量,最后比较结果是否相同?让学生说说计算的方法。
教师说明:即使结果不完全一样,是因为测量的结果存在误差,我们还是以
计算的结果为准。
四、巩固提高
完成想想做做的题目。
第1题
学生独立计算,交流算法。要求学生用量角器量出结果,和计算的结果想比较。
第2题
指导学生看图,弄清拼成的三角形的三个内角指的是哪三个角。计算三角形三个角的`内角和,帮助学生进一步理解:三角形三个内角的和是180度。
第3题
通过操作、计算,使学生认识到:不管三角形的大小怎样变化,它的内角和是不会变化的。
第4、5、6
引导学生运用三角形的分类及三角形内角和的有关知识解决有关问题,重点培养学生灵活运用知识解决问题的能力。
《三角形的内角和》优质教案 10
教学内容:
人教版义务教育课程标准试验教科书数学四年级下册第67页。
设计理念:
遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。《数学课程标准》指出,让学生学习有价值的数学,让学生带着问题、带着自己的思想、自己的思维进入数学课堂,对于学生的数学学习有着重要作用。因此,我尝试着将数学文本、课外预习、课堂教学三方有机整合,在质疑、解疑、释疑中展开教学,培养学生提出问题、分析问题和解决问题的探究能力。
教材分析:
三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180。
学情分析:
学生已经掌握三角形特性和分类,熟悉了钝角、锐角、平角这些角的'知识,大多数学生已经在课前通过不同的途径知道三角形的内角和是180度的结论,但不一定清楚道理,所以本课的设计意图不在于了解,而在于验证,让学生在课堂上经历研究问题的过程是本节课的重点。四年级的学生已经初步具备了动手操作的意识和能力,并形成了一定的空间观念,能够在探究问题的过程中,运用已有知识和经验,通过交流、比较、评价寻找解决问题的途径和策略。
教学目标:
1. 使学生经历自主探索三角形的内角和的过程,知道三角形的内角和是180°,能运用这一规律解决一些简单的问题。
2. 使学生在观察、操作、分析、猜想、验证、合作、交流等具体活动中,提高动手操作能力和数学思考能力。
3. 使学生在参与数学学习活动的过程中,获得成功的体验,感受探索数学规律的乐趣,产生喜欢数学的积极情感,培养积极与他人合作的意识
《三角形的内角和》优质教案 11
教学目标:
1、通过量、剪、拼、摆等直观操作的方法,让学生探索并发现三角形内角和等于180度。
2、在活动交流中培养学生合作学习的意识和能力,让学生经历猜测探索总结的数学学习过程,在实验活动中体验探索的过程和方法。
3、通过运用三角形内角和的性质解决一些简单的问题,使学生体会数学与现实生活的联系,体会到数学的价值,增加学生学数学的信心和兴趣。
教学重点:
探索发现三角形内角和等于180并能应用。
教学难点:
三角形内角和是180的探索和验证。
教学过程:
一、创设情境,提出问题
师:大家喜欢猜谜语吗?
生:喜欢。
师:下面请大家猜一个谜语(大屏幕出示形状似座山,稳定性能坚。三竿首尾连,学问不简单。
(打一几何图形))
生:三角形。
师:三角形中都有哪些学问?
生:三角形有三条边,三个角,具有稳定性。
生:三角形按角分,可以分成锐角三角形、直角三角形、钝角三角形。
生:三角形按边分,可以分成等腰三角形,不等边三角形,其中等腰三角形又包含了两条边相等的三角形和等边三角形。
生:一个三角形中最多只能有一个直角,最多只能有一个钝角,最少有两个锐角。
生:三角形的内有和是180。
生:(一脸疑惑)
师:(板书:三角形的内角和是180),你有什么疑惑? 生:什么是内角?
生:每个三角形的内角和都是180吗?
(根据学生的问题,在三角形的内角和是180后面加上一个?)
二、自主探索,实践验证
1、理解内角 师:什么是内角?
生:我认为三角形的内角就是指三角形的三个角。
师:三角形的每个角都是三角形的内角,每个三角形都有三个内角。
2、理解内角和。
师:那三角形的内角和又是指什么?
生:我认为三角形的内角和就是把三角形的三个内角的度数加起来的和。
师:为了方便,我们将三角形的每个内角编上序号1、2、3、我们叫它1、2、3,这三个角的度数和,就是这个三角形的内角和。
3、实践验证
师:每个三角形的内角和都是180吗?用什么方法来验证呢?
生:量一量每个角的度数,然后加起来看看是不是180。
师:请大家拿出课前准备的三角形,亲自量一量,算一算。(学生动手量一量)
师:谁愿意把你的劳动成果和大家分享一下?
生:我量的这个三角形的三个内角的度数分别是60、60、60,加起来一共是180。
师:这位同学量的是一个锐角三角形,并且是比较特殊的三角形等边三角形。
生:我量这个三角形的三个内角的度数分别是45、45、90,加起来一共是180。
师:这是我们三角尺中的一个,也比较特殊,是一个等腰直角三角形。
生:我量的是三角尺中的另一个,三个内角的度数分别是60、30、90,加起来一共是180 生:我量的是钝角三角形,三个内角的度数分别是85、60、38,加起来一共是183。
师:你发现了什么?
生:有的三角形的内角和是180,而有的三角形的内角和却不是180。
师:看来三角形的内角和不一定是180。
生:老师,测量会有误差,量出来的不是很精确,那么求出来的结果也不够精确。虽然不都是三个内角加起来不都是180,但都接近180。
生:都接近180就能说一定是180吗?
师:科学来不得半点虚假,看来这个是不能让大家信服的。那还可以用什么方法来验证呢?下面请同学们小组合作,发挥小组成员的智慧,充分利用大家的学具进行验证,比一比哪些组的方法富有新意,开始!
(学生在小组内进行探索验证。教师巡视,参与到学生的研究中)
师:请每个小组选择一个代言人,和大家分享一下你们的智慧。
生:(边展示边交流)我们小组运用了折一折的方法,把三角形的三个内角都向内折,三个内角就拼成了一个平角,也就是180,所以我们小组得出三角形的内角和是180。
师:你折的只是锐角三角形,只能证明锐角三角形的内角和是180,直角三角形,钝角三角形是不是也是这样的?
生:我们小组也有折的直角三角形,钝角三角形。
(其它的成员展示不同的三角形)
师:看这个小组的同学想问题多全面呀,不仅想到了用什么方法,还想到了用不同的三角形进行验证,老师实在是佩服你们组的智慧,让我们把掌声送给他们!
师:哪个小组和他们的方法不一样?
生:我们小组把三角形的三个内角都撕了下来,拼在了一起,正好拼成了一个平角,也就是180。我们也实验了不同的三角形,三个内角都可以拼成平角,所以我们小组得出结论,三角形的内角和是180。
师:这个小组的方法简便,易操作,很好。
生:我们小组成员是这样想的,一个长方形有4个直角,每个直角90,那么长方形的'内角和就是360,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180。 师:你们小组很聪明,从长方形的内角和联想到直角三角形的内角和是180,从不同的角度去思考问题,谢谢你为我们提供了这么好的方法!
4、小结
师:刚才同学们用量、折、剪、拼、计算、推理等这么多巧妙的方法得出了无论是什么样的三角形的内角和都是1800,你还有什么疑问吗?
生:没有。
师:(去掉问号)那就让我们大声地读出来三角形的内角和是1800。
三、巩固应用,加深理解
1、说一说每个三角形的内角和是多少度
师:(出示一个大三角形)这个大三角形的内角和是多少度?
生: 180
师:(出示一个小三角形)这个小三角形的内角和是多少度?
生:180
师:(演示)把这两个三角形拼在一起,拼成的大三角形的内角和是多少度?
生:180
师:为什么每个三角形的内角和是1800,而合起来还是180呢?另外那180去哪儿了?
生:把两个三角形拼成一个大三角形,两个直角不再是大三角形的内角,所以少了180
师:(演示)把一个大三角形分成两个三角形,每个三角形的内角和是多少度?
生:180
2、求下面各角的度数
师:如果老师告诉你一个三角形的两个角的度数,你能说出第三个角的度数吗?
(出)
生:三角形内角和是180,在第一个三角形中,用180-75-28,A=77
生:用180-90-35,C =55。
生:第二个三角形是直角三角形,B是直角,也可以直接用90-35=55。
生:第三个三角形中,用180-20-45,B=115。
3、一个等腰三角形的风筝,它的一个底角是70,它的顶角是多少度?
生:等腰三角形的两个底角相等,所以用180-70-70 4、
师:三角形的内角和在我们的生活中应用很广泛,老师给大家带来一个在建筑中应用的例子。
在设计这座大桥时,如果设计师将斜拉的钢索与桥柱形成的夹角设计成了56,建筑师在造桥时怎样才能确定钢索与桥柱是否形成了这个角度?
生:用量角器量一量
师:量哪个角?量一量斜拉的钢索与桥柱形成的夹角吗?
生:桥面与桥柱形成一个直角,是90,斜拉的钢索与桥柱形成的夹角是56,那么用180-90-56=34,就是斜拉的钢索与桥面的夹角,所以只要让斜拉的钢索与桥面的夹角是34,那么斜拉的钢索与桥柱形成的夹角就是56
师:你真是个善于观察、善于思考的孩子,努力学习,将来一定会成为一名优秀的建筑师。
四、回顾总结,拓展延伸
师:40分钟很快就过去了,你愿意把自己的收获与大家共同分享吗?
生:我知道了三角形的内角和是180。
生:无论是大三角形,还是小三角形,无论是锐角三角形,还是钝角三角形,还是锐角三角形,内角和都是180。
生:把一个大三角形分成两个小三角形,每个三角形的内角和还是180,把两个小三角形拼成一个大三角形,大三角形的内角和还是180。
生:我可以用撕、拼、折等方法来验证三角形的内角和是180。
师:这个同学不仅学会了知识,而且学会了方法,我们只有学会了方法,才能更好地去探究更多的知识。
师:那你现在知道为什么一个三角形内只能有一个直角或一个钝角吗?
生:两个直角的度数之和是180,再加上一个角,三个角的度数之和超过了180,所以一个三角形中最多只能有一个直角。
生:两个钝角的度数之和就超过了180,再加上一个角,就更大了,所以一个三角形中最多只能有一个钝角。
师:我们学习知识,必须知其然并知其所以然。
师:三角形中还有许许多多的学问,让我们在以后的学习中继续去研究。
《三角形的内角和》优质教案 12
探索与发现:三角形内角和
课型
新授课
设计说明
本节课是在学生已经掌握了钝角、锐角、直角、平角及三角形分类的基础上,让学生通过直观操作来认识和学习的。
1.重视知识的探究与发现。
在教学中,概念的形成没有直接给出,而是整节课都是在引导学生的实验操作、活动探究中进行。在探究活动中,不但重视知识的形成过程,而且注意留给学生充分进行主动探究和交流的空间,让学生归纳出三角形内角和等于180°。
2.重视学生的合作探究学习。
使学生能够积极主动地参与到数学活动中,能在实践中感知、发表自己的见解,学生感受到通过自己的努力取得成功所带来的满足感,同时也培养了学生的探究能力和创新能力。
课前准备
教师准备:PPT课件 量角器 直尺 三角尺
学生准备:量角器 三角尺
教学过程
一、常识导入。(3分钟)
1.介绍帕斯卡:早在300多年前有一个科学家,他在12岁时验证了任意三角形的内角和都是180°,他就是法国科学家、物理学家帕斯卡。
2.导入新课:这节课我们也来验证一下三角形的内角和。
1.倾听教师的介绍,了解帕斯卡。
2.明确本节课的学习内容。
1.填空。
(1)有一个角是钝角的三角形是( )三角形;有一个角是直角的三角形是( )三角形;三个角都是锐角的三角形是( )三角形。
(2)平角=( )°
直角=( )°
周角=( )°
二、合作交流,探究新知。(18分钟)
(一)量算法。
1.探究特殊三角形的内角和。
(1)出示一副三角尺,引导学生说一说各个角的度数。
(2)引导学生算一算它们的内角和各是多少度。
(3)引导学生得出结论。
2.探究一般三角形的内角和。
(1)引导学生猜一猜其他三角形的内角和是多少度。
(2)组织学生验证一般三角形的内角和是180°。
①引导学生量出每个内角的度数,再计算三个内角的和。
②引导学生分工合作,把结果填入记录表中。
③引导学生说说自己的发现。
(3)引导学生明确由于测量有误差,实际上三角形的内角和是180°。
(二)剪拼法。
1.组织学生用剪拼的方法求三角形的内角和。
2.引导学生总结发现。
3.课件演示,得出三角形的内角和是180°的结论。
(三)折拼法。
1.引导学生结合剪拼法尝试折拼法。
2.引导学生得出结论。
3.课件演示折拼法。
(一)1.(1)说出每个三角尺中各个角的度数。
①90°;60°;30°。
②90°;45°;45°。
(2)独立算出每个三角尺的内角和。
(3)得出结论:这两个三角尺的内角和都是180°。
2.(1)同桌之间互相说说自己的'看法。
猜测:一种是内角和可能是180°,另一种是内角和一定是180°。
(2)小组合作进行探究,量一量,算一算,说一说。
通过观察发现:三角形的内角和都在180°左右。
(3)听老师讲解,明确三角形的内角和是180°。
(二)1.把一个三角形的三个内角剪下来,小组内拼合。在拼合过程中要注意:顶点重合,三个角拼合。
2.发现三角形的三个内角正好拼成了一个平角,也就是180°。
3.观看课件演示,明确三角形的三个内角拼成了一个平角,所以它的内角和是180°。
(三)1.动手折一折、拼一拼。
2.得出结论:三角形的三个内角拼在一起正好是一个平角,所以三角形的内角和是180°。
3.观看课件演示,再次明确三角形的内角和是180°。
2.算一算。
在一个直角三角形中,已知一个锐角是35°,另一个锐角是多少度?
3.在能组成三角形的三个角的后面画“√”。
(1)90°;20°;70°。 ( )
(2)100°;50°;50°。( )
(3)70°;70°;70°。( )
(4)80°;70°;30°。( )
4.猜一猜。
有一个三角形,其中一个角是20°,它可能是什么三角形?
5.已知∠1、∠2、∠3是三角形的三个内角,请你计算出每个三角形中∠1的度数。
(1)∠2=58° ∠3=48°
(2)∠2=∠3=70°
(3)∠1=∠2=∠3
三、巩固练习。(16分钟)
把正确答案的序号填在括号里。
1.把两个小三角形合成一个大三角形,这个大三角形的内角和是( )。
A.90° B.180° C.360°
2.一个三角形中有两个锐角,则第三个角( )。
A.也是锐角
B.一定是直角
C.一定是钝角
D.无法确定
小组合作,选一选,明确答案。
1.明确任何一个三角形的内角和都是180°,三角形的内角和与三角形的大小无关。
2.通过讨论,明确任何一个三角形都至少有两个锐角,所以无法确定。
6.如下图,在直角三角形中,已知∠2=30°,不计算,你知道∠1的度数吗?
四、课堂总结,拓展延伸。(3分钟)
1.总结本节课的学习内容。
2.布置课后作业。
谈自己本节课的收获。
《三角形的内角和》优质教案 13
一、教材分析:
教材创设了一个有趣的问题情境,以此激发学生的兴趣,引出探索活动。首先,教师应使学生明确“内角”的意义,然后引导学生探索三角形内角和等于多少。大多数学生会想到用测量角的方法,此时就可以安排小组活动。每组同学可以画出大小、形状不同的若干个三角形,分别量出三个内角的度数,并求出它们的和,填写在教材提供的表中。最后发现,大小、形状不同的三角形,每一个三角形内角和都在180°左右。三角形的内角和是否正好等于180°呢?教材中安排了两个活动:一是把三角形三个内角撕下来,再拼在一起,组成一个平角,因此三角形内角和是180度。二是把三个内角折叠在一起,发现也能组成一个平角。每个活动都要使学生动手试一试,加深对三角形内角和的认识,体验三角形内角和性质的探索过程。
二、学生状况分析:
学生在本课学习前已经认识了三角形的基本特征及分类,并且在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,学生课上对数学知识、能力和思考问题的角度有一定的差异,因此比较容易出现解决问题的策略多样化。
三、学习目标:
1.通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180°。
2.知道三角形两个角的度数,能求出第三个角的度数。
3.发展学生动手操作、观察比较和抽象概括的能力。体验数学活动的探索乐趣,体会研究数学问题的思想方法。
4.能应用三角形内角和的性质解决一些简单的问题。
四、教具、学具准备:
课件、6张三角形的纸、学生准备任意三角形。
五、教学过程:
(一)设疑导入(2分钟)
师:在平的数学学习中,我们经常会使用一种工具——三角尺。(课件出示两个三角尺)每个三角尺里都有三个角,我们把它叫内角。(板书内角)为了方便老师分别给两个三角尺的内角编上号,谁能告诉我它们分别是多少度?
师:请同学们仔细观察比较一下,这两个三角形有什么共同之处?
生:它们的内角和都是180°。
师:你是怎么得出180°的?
生:30°+60°+90°=180°
师:那第二个呢?
生:45°+45°+90°=180°
师:同学们,通过刚才的算一算,我们得到这两个直角三角形的内角和都是180°,由此你想到什么呢?(这两个直角三角形的内角和都是180°,那其他的三角形呢?)
生A:其他三角形的内角和也是180°
(二)动手操作,探究问题,以动启思(20分钟)
1、师:这只是我们的一种猜测,三角形的内角和是否真的等于180°,还需要我们去验证。接下来,我们就来验证三角形的内角和,老师为大家准备了1号——6号6个三角形,下面请每个同学选择一个三角形来验证。想一想,你准备用什么样的方法来验证三角形的内角和,然后开始验证。
(1)小组合作,讨论验证方法
(2)汇报验证方法、结果
现在我们一起交流一下验证的结果,交流的时候,你先介绍一下验证的是几号三角形,然后说一说是什么三角形,最后说一说内角和是多少。
师:同学们我、其实刚才我在验证的时候很多同学有的还是量一量的方法,从刚才过程中来看量一量的方法还是有误差,所以老师建议大家可以是有更加准确、简便的方法来验证。
师:好,请同学们观察大屏幕,这些三角形的内角和都是180°,那么请问,现在我们能不能以下结论:所以的三角形的内角和都是180°呢?
生:可以
师:难道你们都没有怀疑这是老师故意安排好的呢?(没有)那我告诉你们这就是老师故意安排好的,或许也是一种巧合。我们在科学研究的道路上就要敢于质疑的精神,接下来我们怎么办?(我们应该在找一些三角形验证)这个建议非常好,找一些任意三角形这样才有说服力。
师:每个同学都准备的三角形带了吗?下面就请同学来验证你们自己带来的三角形的内角和究竟是多少度。学生汇报交流。
同学们我们这样验证,验证完吗?(验证不完)
师:刚才我们通过算一算、拼一拼、折一折的方法,不管是老师提供的三角形还是你们自己准备的三角形这些直角、锐角、钝角三角形的内角和都是180°,那么我们可以概括成什么呢?
生:我们发现每个三角形的三个内角和都是180°。
课件出示结论:三角形的内角和是180°)。
师:看来我们的猜测是正确的,现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是1800”。(板书:三角形的内角和是1800
(四)巩固练习:(15分钟)
学会了知识,我们就要懂得去运用。下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件)
师:一块三角尺的内角和180°,两块同样的三角尺拼成的一个大三角形的.内角和又是多少呢?
师:把大三角形平均分成两份。它的(指均分后的一个小三角形)内角和是多少度?(生有的答90 °,有的180 °。)
师:哪个对?为什么?
生:180°,因为它还是一个三角形。
师:每个小三角形的度数是180°,那么这样的两个小三角形拼成一个大三角形,内角和是多少度?这时学生的答案又出现了180°和360°两种。
师:究竟谁对呢?大家可以在小组内拼一拼,进行讨论
生1:180°,因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180°。
生2:我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,就比原来两个三角形少180 °,所以大三角形的内角和还是180°,不是360°。
师:三角形不论位置、大小、形状如何,它的内角和总是180°
1、三角形ABC是等腰三角形,角A是顶角等于50度,角B=?角C=?
教师引导学生复习等腰三角形的特征,再让学生谈谈想法。
教师汇总解法:
180度-50度=130度130度÷2度=65度
知识拓展:三角形ABC是等腰三角形,角B是底角等于50度,顶角角A=?(学生自主完成汇报结果)教师汇总解法:
50度×2=100度180度-100度=80度
2、一个直角三角形,一个锐角为35度,求另一个锐角的度数。
教师带领学生复习直角三角形的特征。(指名汇报)解法不唯一,只要学生思路正确老师应及时给与肯定。教师汇总解法:
(1)180度-90度=90度90度-35度=55度
(2)180度-35度=145度145度-90度=55度
(3)90度+35度=125度180度-125度=55度
(4)90度-35度=55度
3、下面的说法对吗?
1)钝角三角形的两个锐角之和大于90度。()
2)大三角形的内角和比小三角形的内角和大。()
3)一个直角三角形中最多有一个直角。()
学生自主理解题意,教师引导学生说出对或错的原因。
4、老师这还有一个难题需要解决,同学们愿意接受挑战吗?
师:老师手里有一个信封,信封里露出一来个角,这个角的度数是45度,请同学们判断一下,隐藏在信封里的三角形是什么三角形?
师:信封里还露出一来个角,这个角的度数是45度,它是这个三角形内角中最小的锐角,请同学们判断一下,隐藏在信封里的三角形是什么三角形?
5、想一想,下面图形的内角和分别是多少?
学生小组讨论如何分割,教师巡视并参与讨论,讨论完后小组汇报,指名板演。
(五)课堂小结
师:一节课快要结束了,那么我们回想一下这节课你有什么收获,什么感想?
《三角形的内角和》优质教案 14
尊敬的各位评委老师:
大家好!今天我很高兴也很荣幸能有这个机会与大家共同交流,在深入钻研教材,充分了解学生的基础上,我准备从以下几个方面进行说课:
一、教材分析
“三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。
二、教学目标
1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。
2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。
3、情感与态度:使学生感受数学图形之美及转化思想,体验数学就在我们身边。
三、教学重难点
教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。
教学难点:采用多种途径验证三角形的内角和是180°。
四、学情分析
通过前面的学习,学生已经掌握了三角形的一些基础知识,会量角,部分学生已经知道三角形内角和是180°,但不知道怎样得出这个结论。
五、教学法分析
本节课采用自主探索、合作交流的教学方法,学生自主参与知识的构建。领悟转化思想在解决问题中的应用。
六、课前准备
1、教师准备:多媒体课件、三角形教具。
2、学生准备:锐、直、钝角三角形各两个,量角器、剪刀。
七、教学过程
(一)、创设情境,激趣导入
导入:“同学们,有三位老朋友已经恭候我们多时了。“(出示三角形动画课件),让学生依次说出各是什么三角形。
课件分别闪烁三角形三个内角,并介绍:“这三个角叫做三角形的内角,把三个角的度数加起来,就是三角形的内角和。请学生画一个三角形,要求:有两个直角。为什么不能画,问题在哪呢?这节课我们就一起来探究三角形的内角和。板书课题。
(二)、自主探究、合作交流
1、探索特殊三角形内角和
拿出自己的一副三角板,同桌之间互相说一说各个角的度数。
三角形内角和是多少度呢?指名汇报。90°+30°+60°=180°
90°+45°+45°=180°
从刚才两个三角形内角和的计算中,你发现了什么?
2、探索一般三角形的内角和
一般三角形的内角和是多少度?猜一猜。你们能想办法证明吗?接下来,我们采用小组合作的方式进行探究,看看哪个组的方法多而且富有新意。
3、汇报交流
请小组代表汇报方法。
1)量:你测量的三个内角分别是多少度?和呢?(有不同意见)
没有统一的结果,有没有其他方法?
2)剪―拼:把三角形的三个内角剪下来拼在一起,成为一个平角,利用平角是180°这一特点,得出结论。(学生尝试验证)
3)折拼:学生边演示边汇报。把三角形的三个内角都向内折,把这三个内角拼组成一个平角。所以得出三角形的内角和是180°。(学生尝试验证)
4)教师课件验证结果。
请看屏幕,老师也来验证一下,是不是和你们的结果一样?播放课件。我们可以得到一个怎样的结论?
学生回答后教师板书:三角形的内角和是180°
为什么有的小组用测量的方法不能得到180°?(误差)
4、验证深化
质疑:大小不同的三角形,它们的'内角和会是一样吗?(一样)
谁能说一说不能画出有两个直角的三角形的原因?
(三)、应用规律,解决问题:
揭示规律后,学生要掌握知识,就要通过解答实际问题。
1、为了让学生积极参与,我设计了闯关的活动来激励学生的兴趣。闯关成功会获得小奖章。
第一关:基础练习,要求学生利用“三角形内角和是180°”这一规律在三角形内已知两个角,求第三个角(课件出示)
第二关,提高练习,①已知等腰三角形的底角,求顶角。②求等边三角形每个角的度数是多少。直角三角形已知一个锐角,求另一个。
让学生灵活应用隐含条件来解决问题,进一步提高能力。
2、小组合作练习,完成相应做一做。
(四)、课堂总结,效果检测。
一节成功的好课要有一个好的开头,更要有一个完美的结尾,数学是使人变聪明的学科,通过这节课的学习,你收获了什么?学生们畅所欲言。接下来老师要检查大家的学习效果,学生完成答题卡,组长评判,集体汇报。
(五)作业课下继续探究三角形,看你有什么新发现。
八、板书设计
通过这样的设计,使学生不仅学到科学的探究方法,而且体验到探索的乐趣,使学生在自主中学习,在探究中发现,在发现中成长。以上便是我对《三角形的内角和》这一堂课的说课,谢谢大家!
《三角形的内角和》优质教案 15
教学内容:
p.28、29
教材简析:
本节课的教学先通过计算三角尺的3个内角的度数的和,激发学生的好奇心,进而引发三角形内角和是180度的猜想,再通过组织操作活动验证猜想,得出结论。
教学目标:
1、让学生通过观察、操作、比较、归纳,发现三角形的内角和是180。
2、让学生学会根据三角形的内角和是180 这一知识求三角形中一个未知角的度数。
3、激发学生主动参与、自主探索的意识,锻炼动手能力,发展空间观念。
教学准备:
三角板,量角器、点子图、自制的三种三角形纸片等。
教学过程:
一、提出猜想
老师取一块三角板,让学生分别说说这三个角的度数,再加一加,分别得到这样的2个算式:90+60+30=180,90+45+45=180
看了这2个算式你有什么猜想?
(三角形的三个角加起来等于180度)
二、验证猜想
1、画、量:在点子图上,分别画锐角三角形、直角三角形、钝角三角形。画好后分别量出各个角的度数,再把三个角的度数相加。
老师注意巡视和指导。交流各自加得的结果,说说你的发现。
2、折、拼:学生用自己事先剪好的图形,折一折。
指名介绍折的方法:比如折的是一个锐角三角形,可以先把它上面的一个角折下,顶点和下面的边重合,再分别把左边、右边的角往里折,三个角的顶点要重合。发现:三个角会正好在一直线上,说明它们合起来是一个平角,也就是180度。
继续用该方法折钝角三角形,得到同样的结果。
直角三角形的折法有不同吗?
通过交流使学生明白:除了用刚才的方法之外,直角三角形还可以用更简便的'方法折;可以直角不动,而把两个锐角折下,正好能拼成一个直角;两个直角的度数和也是180度。
3、撕、拼:可能有个别学生对折的方法感到有困难。那么还可以用撕的方法。
在撕之前要分别在三个角上标好角1、角2和角3。然后撕下三个角,把三个角的一条边、顶点重合,也能清楚地看到三个角合起来就是一个平角180度。
小结:我们可以用多种方法,得到同样的结果:三角形的内角和是180。
4、试一试
三角形中,角1=75,角2=39,角3=( )
算一算,量一量,结果相同吗?
三、完成想想做做
1、算出下面每个三角形中未知角的度数。
在交流的时候可以分别学生说说怎么算才更方便。比如第1题,可先算40加60等于100,再用180减100等于80。第2题则先算180减110等于70,再用70减55更方便。第3题是直角三角形,可不用180去减,而用90减55更好。
指出:在计算的时候,我们可根据具体的数据选择更佳的算法。
2、一块三角尺的内角和是180 ,用两块完全一样的三角尺拼成一个三角形,这个三角形的内角和是多少度?
可先猜想:两个三角形拼在一起,会不会它的内角和变成1802=360 呢?为什么?
然后再分别算一算图上的这三个三角形的内角和。得出结论:三角形不论大小,它的内角和都是180 。
3、用一张正方形纸折一折,填一填。
4、说理:一个直角三角形中最多有几个直角?为什么?
一个钝角三角形中最多有几个直角?为什么?
四、布置作业
第4、5题
【《三角形的内角和》优质教案】相关文章:
三角形内角和教案02-19
教案:《三角形的内角和》04-25
三角形的内角和教案06-13
教案及反思:三角形的内角和04-25
《三角形内角和》04-26
三角形的内角和04-26
三角形内角和教案15篇02-20
《三角形内角和》数学教案03-26
【精选】三角形内角和教案四篇05-15