- 相关推荐
22.3三角形的中位线教案冀教版
22.3三角形的中位线教案冀教版教学目标: 申柱芳 知识与技能 理解并掌握三角形中位线的概念、性质,会利用性质解决有关问题. 过程与方法 经历探索三角形中位线性质的过程,感受三角形与四边形的联系,培养学生分析问题和解决问题的能力. 情感态度价值观 通过对问题的探索研究,培养学生大胆猜想、合理论证的科学精神 教学重点、难点 : 重点:探索并运用三角形中位线的性质 难点:从三角形中位线性质的探索过程中抽象出三角形中位线的性质 教学方法:活动——观察——探索相结合 通过自己实际操作从图形中观察出结论并利用结论解决问题。 教学过程: 导入新课 你还记得吗?以前学过的三角形的重要线段有哪些? A 三角形的角平分线、高线、中线 它们各有几条?3条 观察与思考 F E 在三角形ABC中,D是中点,AD是三角形 ABC的中线 C D B E 、F是AB、 AC 的中点,EF是三角形的中位线 1.如何用语言表述三角形的中位线? 2.一个三角形有几条中位线?请指出来 1、定义 连接三角形两边中点的线段叫做三角形的中位线 一个三角形有3条中位线 观察猜想 三角形中位线是连结三角形两边中点的线段,那么它与第三边具有怎样的数量关系和位置关系呢?如图: DE为△ABC的中位线,DE与BC具有怎样的数量关系和位置关系呢? 做一做 方法一:1、、取AB、AC的中点D、E,连接DE 2、量一量DE与BC的长度,∠ADE和∠B的度数 3、猜一猜:线段DE与BC的大小关系,位置关系 方法二:1、剪一个三角形记为△ABC; 2、分别取AB、AC的中点D、E,连接DE; 3、沿DE将△ABC剪成两部分,将△ADE绕点E旋转180°,得四边形BCFD,如图下图 探索推证 四边形DBCF是平行四边形吗?如果是,那么DE和BC之间的位置关系和数量关系如何? 结果:DE∥BC且DE=1/2 BC 结论:三角形的中位的性质 三角形的中位线平行于第三边,并且等于它的一半. A D F B C E 例题讲解:如下图,在△ABC中,D、E、F分别是AB、BC、AC的中点,AC=12,BC=16,求四边形DECF的周长? 解:(略) 练习1.如图1:在△ABC中,DE是中位线 (1)若∠ADE=60°, 则∠B= 度,为什么?(2)若BC=8cm,则DE= cm,为什么? 2.如图2:在△ABC中,D、E、F分别是各边中点,AB=6cm,AC=8cm ,BC=10cm, 则△DEF的周长= cm 小结:本节你学到了什么? 作业:教材68页2题 教 学 反 思 本节课的内容是三角形中位线定理,在讲课过程中我注重启发引导学生经过探索、猜想得到结论后再去证明,注重引导学生用不同的方法探索三角形中位线定理,开阔了学生的视野,培养了学生的思维能力,而且在授课过程中尽可能创设一些问题情境,为学生提供自主探索发现的空间,然后再去证明,从而使推理成为探索活动的自然延续和必要发展,让学生经历“猜想—探索——发现—-推理”的过程,体会合情推理与演绎推理在获得结论中各发挥的作用,并且注重培养学生的合作交流共同研讨的习惯. 教学过程的不足之处是整个教学过程前后联系不够紧凑,学生在证明思路和方法上理解的不够透彻,并且在辅助线的制作上出现思维停滞,学生对老师的依赖心理过重,自主探索的勇气欠佳,在解题的步骤中说理过程不充分,在以后的教学过程中还有待于完善和培养. 总的来说,本节课既有成功之处,又有欠缺不足,在三维目标的指导下,我将继续努力,培养学生自主探索,合作交流的好习惯,真正达到师生互动,融会贯通.【22.3三角形的中位线教案冀教版】相关文章:
冀教版英语教案01-03
冀教版小学音乐教案11-14
《三角形中位线》教案(通用12篇)06-13
分式方程教案冀教版(精选11篇)11-10
冀教版三年级下册教案12-30
冀教版六年级英语下册教案11-10
冀教版小学语文三年级教案01-23
冀教版小学数学六年级教案01-01
冀教版八上数学教学计划05-28
冀教版小学英语教学计划01-18