届高三数学二轮专题复习教案-数列

时间:2023-04-25 19:44:51 教案 我要投稿
  • 相关推荐

2009届高三数学二轮专题复习教案-数列

2009届高三数学二轮专题复习教案——数列 一、本章知识结构: 二、重点知识回顾 1.数列的概念及表示方法   (1)定义:按照一定顺序排列着的一列数.   (2)表示方法:列表法、解析法(通项公式法和递推公式法)、图象法.   (3)分类:按项数有限还是无限分为有穷数列和无穷数列;按项与项之间的大小关系可分为单调数列、摆动数列和常数列.   (4) 与 的关系: .   2.等差数列和等比数列的比较   (1)定义:从第2项起每一项与它前一项的差等于同一常数的数列叫等差数列;从第2项起每一项与它前一项的比等于同一常数(不为0)的数列叫做等比数列.   (2)递推公式: .   (3)通项公式: .   (4)性质   等差数列的主要性质:   ①单调性: 时为递增数列, 时为递减数列, 时为常数列.   ②若 ,则 .特别地,当 时,有 .   ③ .   ④ 成等差数列.   等比数列的主要性质:   ①单调性:当 或 时,为递增数列;当 ,或 时,为递减数列;当 时,为摆动数列;当 时,为常数列.   ②若 ,则 .特别地,若 ,则 .   ③ .   ④ ,…,当 时为等比数列;当 时,若 为偶数,不是等比数列.若 为奇数,是公比为 的等比数列. 三、考点剖析 考点一:等差、等比数列的概念与性质 例1. (2008深圳模拟)已知数列  (1)求数列 的通项公式; (2)求数列 解:(1)当 ;、   当 ,   、 (2)令    当 ;   当   综上,    点评:本题考查了数列的前n项与数列的通项公式之间的关系,特别要注意n=1时情况,在解题时经常会忘记。第二问要分情况讨论,体现了分类讨论的数学思想. 例2、(2008广东双合中学)已知等差数列 的前n项和为 ,且 , . 数列 是等比数列, (其中 ). (I)求数列 和 的通项公式;(II)记 . 解:(I)公差为d, 则  .  设等比数列 的公比为 ,  . (II)    作差:     . 点评:本题考查了等差数列与等比数列的基本知识,第二问,求前n项和的解法,要抓住它的结特征,一个等差数列与一个等比数列之积,乘以2后变成另外的一个式子,体现了数学的转化思想。 考点二:求数列的通项与求和 例3.(2008江苏)将全体正整数排成一个三角形数阵:       按照以上排列的规律,第 行( )从左向右的第3个数为  解:前n-1 行共有正整数1+2+…+(n-1)个,即 个,因此第n 行第3 个数是全体正整数中第 +3个,即为 . 点评:本小题考查归纳推理和等差数列求和公式,难点在于求出数列的通项,解决此题需要一定的观察能力和逻辑推理能力。 例4.(2008深圳模拟)图(1)、(2)、(3)、(4)分别包含1个、5个、13个、25个第二十九届北京奥运会吉祥物“福娃迎迎”,按同样的方式构造图形,设第 个图形包含 个“福娃迎迎”,则     ; ____ 解:第1个图个数:1 第2个图个数:1+3+1 第3个图个数:1+3+5+3+1 第4个图个数:1+3+5+7+5+3+1 第5个图个数:1+3+5+7+9+7+5+3+1= , 所以,f(5)=41 f(2)-f(1)=4 ,f(3)-f(2)=8,f(4)-f(3)=12,f(5)-f(4)=16   点评:由特殊到一般,考查逻辑归纳能力,分析问题和解决问题的能力,本题的第二问是一个递推关系式,有时候求数列的通项公式,可以转化递推公式来求解,体现了转化与化归的数学思想。 考点三:数列与不等式的联系 例5.(2009届高三湖南益阳)已知等比数列 的首项为 ,公比 满足 。又已知 , , 成等差数列。 (1)求数列 的通项 (2)令 ,求证:对于任意 ,都有 (1)解:∵  ∴  ∴ ∵  ∴  ∴  (2)证明:∵ ,  ∴   点评:把复杂的问题转化成清晰的问题是数学中的重要思想,本题中的第(2)问,采用裂项相消法法,求出数列之和,由n的范围证出不等式。 例6、(2008辽宁理) 在数列 , 中,a1=2,b1=4,且 成等差数列, 成等比数列( ) (Ⅰ)求a2,a3,a4及b2,b3,b4,由此猜测 , 的通项公式,并证明你的结论; (Ⅱ)证明: . 解:(Ⅰ)由条件得 由此可得  . 猜测 . 用数学归纳法证明: ①当n=1时,由上可得结论成立. ②假设当n=k时,结论成立,即  , 那么当n=k+1时,  . 所以当n=k+1时,结论也成立. 由①②,可知 对一切正整数都成立. (Ⅱ) . n≥2时,由(Ⅰ)知 . 故     综上,原不等式成立. 点评:本小题主要考查等差数列,等比数列,数学归纳法,不等式等基础知识,考查综合运用数学知识进行归纳、总结、推理、论证等能力. 例7. (2008安徽理)设数列 满足 为实数 (Ⅰ)证明: 对任意 成立的充分必要条件是 ; (Ⅱ)设 ,证明: ; (Ⅲ)设 ,证明: 解: (1) 必要性 :  , 又 ,即 充分性 :设  ,对 用数学归纳法证明   当 时, .假设   则 ,且  ,由数学归纳法知 对所有 成立 (2) 设  ,当 时, ,结论成立 当  时, ,由(1)知 ,所以 且  (3) 设  ,当 时, ,结论成立  当 时,由(2)知   点评:本题是数列、充要条件、数学归纳法的知识交汇题,属于难题,复习时应引起注意,加强训练。 考点四:数列与函数、概率等的联系 例题8.. (2008福建理) 已知函数 .   (Ⅰ)设{an}是正数组成的数列,前n项和为Sn,其中a1=3.若点 (n∈N*)在函数y=f′(x)的图象上,求证:点(n,Sn)也在y=f′(x)的图象上;   (Ⅱ)求函数f(x)在区间(a-1,a)内的极值.   (Ⅰ)证明:因为 所以 ′(x)=x2+2x,   由点 在函数y=f′(x)的图象上,   又 所以   所以 ,又因为 ′(n)=n2+2n,所以 ,   故点 也在函数y=f′(x)的图象上. (Ⅱ)解: , 由 得 . 当x变化时, ﹑ 的变化情况如下表:   x (-∞,-2) -2 (-2,0) 0 (0,+∞)  f′(x) + 0 - 0 +  f(x) ↗ 极大值 ↘ 极小值 ↗  注意到 ,从而 ①当 ,此时 无极小值; ②当 的极小值为 ,此时 无极大值; ③当 既无极大值又无极小值. 点评:本小题主要考查函数极值、等差数列等基本知识,考查分类与整合、转化与化归等数学思想方法,考查分析问题和解决问题的能力.  例9 、(2007江西理)将一骰子连续抛掷三次,它落地时向上的点数依次成等差数 列的概率为(  )   A. B.  C.  D.    解:一骰子连续抛掷三次得到的数列共有个,其中为等差数列有三类:(1)公差为0的有6个;(2)公差为1或-1的有8个;(3)公差为2或-2的有4个,共有18个, 成等差数列的概率为,选B 点评:本题是以数列和概率的背景出现,题型新颖而别开生面,有采取分类讨论,分类时要做到不遗漏,不重复。 考点五:数列与程序框图的联系 例10、(2009广州天河区模拟)根据如图所示的程序框图,将输出的x、y值依次分别记为 ; (Ⅰ)求数列 的通项公式 ; (Ⅱ)写出y1,y2,y3,y4,由此猜想出数列{yn}; 的一个通项公式yn,并证明你的结论; (Ⅲ)求 . 解:(Ⅰ)由框图,知数列  ∴  (Ⅱ)y1=2,y2=8,y3=26,y4=80. 由此,猜想 证明:由框图,知数列{yn}中,yn+1=3yn+2 ∴ ∴  ∴数列{yn+1}是以3为首项,3为公比的等比数列。 ∴ +1=3·3n-1=3n ∴ =3n-1( ) (Ⅲ)zn= =1×(3-1)+3×(32-1)+…+(2n-1)(3n-1) =1×3+3×32+…+(2n-1)·3n-[1+3+…+(2n-1)] 记Sn=1×3+3×32+…+(2n-1)·3n,①  则3Sn=1×32+3×33+…+(2n-1)×3n+1  ② ①-②,得-2Sn=3+2·32+2·33+…+2·3n-(2n-1)·3n+1 =2(3+32+…+3n)-3-(2n-1)·3n+1 =2× =  ∴ 又1+3+…+(2n-1)=n2 ∴ .   点评:程序框图与数列的联系是新课标背景下的新鲜事物,因为程序框图中循环,与数列的各项一一对应,所以,这方面的内容是命题的新方向,应引起重视。 四、方法总结与2009年高考预测 (一)方法总结 1. 求数列的通项通常有两种题型:一是根据所给的一列数,通过观察求通项;一是根据递推关系式求通项。 2. 数列中的不等式问题是高考的难点热点问题,对不等式的证明有比较法、放缩,放缩通常有化归等比数列和可裂项的形式。 3. 数列是特殊的函数,而函数又是高中数学的一条主线,所以数列这一部分是容易命制多个知识点交融的题,这应是命题的一个方向。 (二)2009年高考预测 1. 数列中 与 的关系一直是高考的热点,求数列的通项公式是最为常见的题目,要切实注意 与 的关系.关于递推公式,在《考试说明》中的考试要求是:“了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项”。但实际上,从近两年各地高考试题来看,是加大了对“递推公式”的考查。 2. 探索性问题在数列中考查较多,试题没有给出结论,需要考生猜出或自己找出结论,然后给以证明.探索性问题对分析问题解决问题的能力有较高的要求. 3. 等差、等比数列的基本知识必考.这类考题既有选择题,填空题,又有解答题;有容易题、中等题,也有难题。 4. 求和问题也是常见的试题,等差数列、等比数列及可以转化为等差、等比数列求和问题应掌握,还应该掌握一些特殊数列的求和. 5. 将数列应用题转化为等差、等比数列问题也是高考中的重点和热点,从本章在高考中所在的分值来看,一年比一年多,而且多注重能力的考查. 6. 有关数列与函数、数列与不等式、数列与概率等问题既是考查的重点,也是考查的难点。今后在这方面还会体现的

【届高三数学二轮专题复习教案-数列】相关文章:

高三数学数列教案04-22

高三英语二轮复习教案01-30

高三二轮复习计划05-24

2022届高三语文二轮教学计划11-21

高三数学二轮复习计划(通用10篇)03-18

数学等差数列教案02-25

高三语文第二轮复习计划02-21

2024届高三历史二轮教学计划(通用10篇)04-11

高三数学一轮复习教案01-29

数学复习教案01-27