教案:等差数列(一)上

时间:2023-04-25 09:56:52 教案 我要投稿
  • 相关推荐

教案:等差数列(一)上

第三课时  等差数列(一) 教学目标: 明确等差数列的定义,掌握等差数列的通项公式,会解决知道an,a1,d,n中的三个,求另外一个的问题;培养学生观察能力,进一步提高学生推理、归纳能力,培养学生的应用意识. 教学重点: 1.等差数列的概念的理解与掌握. 2.等差数列的通项公式的推导及应用. 教学难点: 等差数列“等差”特点的理解、把握和应用. 教学过程: Ⅰ.复习回顾 上两节课我们共同学习了数列的定义及给出数列的两种方法——通项公式和递推公式.这两个公式从不同的角度反映数列的特点,下面我们看这样一些例子 Ⅱ.讲授新课  10,8,6,4,2,…; 21,21,22,22,23,23,24,24,25  2,2,2,2,2,…  首先,请同学们仔细观察这些数列有什么共同的特点?是否可以写出这些数列的通项公式?(引导学生积极思考,努力寻求各数列通项公式,并找出其共同特点) 它们的共同特点是:从第2项起,每一项与它的前一项的“差”都等于同一个常数. 也就是说,这些数列均具有相邻两项之差“相等”的特点.具有这种特点的数列,我们把它叫做等差数列. 1.定义 等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示. 2.等差数列的通项公式 等差数列定义是由一数列相邻两项之间关系而得.若一等差数列{an}的首项是a1,公差是d,则据其定义可得: (n-1)个等式 若将这n-1个等式左右两边分别相加,则可得:an-a1=(n-1)d  即:an=a1+(n-1)d 当n=1时,等式两边均为a1,即上述等式均成立,则对于一切n∈N*时上述公式都成立,所以它可作为数列{an}的通项公式. 看来,若已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项. 由通项公式可类推得:am=a1+(m-1)d,即:a1=am-(m-1)d,则: an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d. 如:a5=a4+d=a3+2d=a2+3d=a1+4d  

【教案:等差数列(一)上】相关文章:

数学等差数列教案02-25

高中数学等差数列教案12-30

等差数列教学反思04-14

高中数学优秀教案之《等差数列》优秀09-13

小班美术教案:一上一下画折线教案及教学反思03-06

一年级上数学的教案01-03

我上中班教案01-04

指尖上的蝴蝶教案03-14

等差数列求和公式教学反思03-23

数学苏教版一年级上教案09-28