- 相关推荐
2011年中考数学复习教案第二章代数式
第二章代数式与中考中考要求及命题趋势
1、掌握整式的有关知识,包括代数式,同类项、单项式、多项式等;
2、熟练地进行整式的四则运算,幂的运算性质以及乘法公式要熟练掌握,灵活运用;
3、熟练运用提公因式法及公式法进行分解因式;
4、了解分式的有关概念式的基本性质;
5、熟练进行分式的加、减、乘、除、乘方的运算和应用。
2009年中考整式的有关知识及整式的四则运算仍然会以填空、选择和解答题的形式出现,乘法公式、因式分解正逐步渗透到综合题中去进行考查数与似的应用题将是今后中考的一个热点。分式的概念及性质,运算仍是考查的重点。特别注意分式的应用题,即要熟悉背景材料,又要从实际问题中抽象出数学模型。
应试对策
掌握整式的有关概念及运算法则,在运算过程中注意运算顺序,掌握运算规律,掌握乘法公式并能灵活运用,在实际问题中,抽象的代数式以及代数式的应用题值得重视。要掌握并灵活运用分式的基本性质,在通分和约分时都要注意分解因式知识的应用。化解求殖题,一要注意整体思想,二要注意解题技巧,对于分式的应用题,要能从实际问题中抽象出数学模型。
第一讲整式
【回顾与思考】
知识点
代数式、代数式的值、整式、同类项、合并同类项、去括号与去括号法则、幂的运算法则、整式的加减乘除乘方运算法则、乘法公式、正整数指数幂、零指数幂、负整数指数幂。
大纲要求
1、了解代数式的概念,会列简单的代数式。理解代数式的值的概念,能正确地求出代数式的值;
2、理解整式、单项式、多项式的概念,会把多项式按字母的降幂(或升幂)排列,理解同类项的概念,会合并同类项;
3、掌握同底数幂的乘法和除法、幂的乘方和积的乘方运算法则,并能熟练地进行数字指数幂的运算;
4、能熟练地运用乘法公式(平方差公式,完全平方公式及(x+a)(x+b)=x2+(a+b)x+ab)进行运算;
5、掌握整式的加减乘除乘方运算,会进行整式的加减乘除乘方的简单混合运算。
考查重点
1.代数式的有关概念.
(1)代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子.单独的一个数或者一个字母也是代数式.
(2)代数式的值;用数值代替代数式里的字母,计算后所得的结果p叫做代数式的值.
求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.
(3)代数式的分类
2.整式的有关概念
(1)单项式:只含有数与字母的积的代数式叫做单项式.
对于给出的单项式,要注意分析它的系数是什么,含有哪些字母,各个字母的指数分别是什么。
(2)多项式:几个单项式的和,叫做多项式
对于给出的多项式,要注意分析它是几次几项式,各项是什么,对各项再像分析单项式那样来分析
(3)多项式的降幂排列与升幂排列
把一个多项式技某一个字母的指数从大列小的顺序排列起来,叫做把这个多项式按这个字母降幂排列
把-个多项式按某一个字母的指数从小到大的顺斤排列起来,叫做把这个多项式技这个字母升幂排列,
给出一个多项式,要会根据要求对它进行降幂排列或升幂排列.
(4)同类项
所含字母相同,并且相同字母的指数也分别相同的项,叫做同类顷.
要会判断给出的项是否同类项,知道同类项可以合并.即其中的X可以代表单项式中的字母部分,代表其他式子。
3.整式的运算
(1)整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接.整式加减的一般步骤是:
(i)如果遇到括号.按去括号法则先去括号:括号前是"十"号,把括号和它前面的"+"号去掉。括号里各项都不变符号,括号前是"一"号,把括号和它前面的"一"号去掉.括号里各项都改变符号.
(ii)合并同类项:同类项的系数相加,所得的结果作为系数.字母和字母的指数不变.
(2)整式的乘除:单项式相乘(除),把它们的系数、相同字母分别相乘(除),对于只在一个单项式(被除式)里含有的字母,则连同它的指数作为积(商)的一个因式相同字母相乘(除)要用到同底数幂的运算性质:
多项式乘(除)以单项式,先把这个多项式的每一项乘(除)以这个单项式,再把所得的积(商)相加.
多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.
遇到特殊形式的多项式乘法,还可以直接算:
(3)整式的乘方
单项式乘方,把系数乘方,作为结果的系数,再把乘方的次数与字母的指数分别相乘所得的幂作为结果的因式。
单项式的乘方要用到幂的乘方性质与积的乘方性质:
多项式的乘方只涉及
【例题经典】
代数式的有关概念
例1、(日照市)已知-1<b<0,0<a<1,那么在代数式a-b、a+b、a+b2、a2+b中,对任意的a、b,对应的代数式的值最大的是()
(A)a+b(B)a-b(C)a+b2(D)a2+b
评析:本题一改将数值代人求值的面貌,要求学生有良好的数感。选(B)
同类项的概念
例1若单项式2am+2nbn-2m+2与a5b7是同类项,求nm的值.
【点评】考查同类项的概念,由同类项定义可得解出即可
例2(05宝应)一套住房的平面图如右图所示,其中卫生间、厨房的面积和是()
A.4xy B.3xy C.2xy D.xy
评析:本题是一道数形结合题,考查了平面图形的面积的计算、合并同类项等知识,同时又隐含着对代数式的理解。选(B)
幂的运算性质
例1(1)am·an=_(m,n都是正整数);
(2)am÷an=_(a≠0,m,n都是正整数,且m n),特别地:a0=1(a≠0),a-p=(a≠0,p是正整数);
(3)(am)n=_(m,n都是正整数);(4)(ab)n=_(n是正整数)
(5)平方差公式:(a+b)(a-b)=_.(6)完全平方公式:(a±b)2=_.
【点评】能够熟练掌握公式进行运算.
例2.下列各式计算正确的是().
(A)(a5)2=a7(B)2x-2=(c)4a3·2a2=8a6(D)a8÷a2=a6
分析:考查学生对幂的运算性质及同类项法则的掌握情况。答案:D
例3.下列各式中,运算正确的是()
A.a2a3=a6 B.(-a+2b)2=(a-2b)2 c.(a+b≠O)D.
分析:考查学生对幂的运算性质答案:B
例4、(泰州市)下列运算正确的是
A.;B.(-2x)3=-2x3;
C.(a-b)(-a+b)=-a2-2ab-b2;
D.
评析:本题意在考查学生幂的运算法则、整式的乘法、二次根式的运算等的掌握情况。选(D)
整式的化简与运算
例5计算:9xy·(-x2y)=;
(2006年江苏省)先化简,再求值:
[(x-y)2+(x+y)(x-y)]÷2x其中x=3,y=-1.5.
【点评】本例题主要考查整式的综合运算,学生认真分析题目中的代数式结构,灵活运用公式,才能使运算简便准确.
MSN(中国大学网)
【中考数学复习教案第二章代数式】相关文章:
中考数学复习教案09-30
代数式数学教案02-15
中考数学基础知识要点复习教案11-13
数学复习教案01-27
《代数式》教案设计08-26
数学总复习教案11-16
小学数学复习教案01-08
小学数学复习教案03-11
第二章教案04-28
中考数学教案01-08