初二数学全册知识点总结

时间:2024-11-21 14:15:40 赛赛 总结 我要投稿
  • 相关推荐

初二数学全册知识点总结

  漫长的学习生涯中,说起知识点,应该没有人不熟悉吧?知识点有时候特指教科书上或考试的知识。掌握知识点是我们提高成绩的关键!下面是小编为大家收集的初二数学全册知识点总结,仅供参考,大家一起来看看吧。

初二数学全册知识点总结

  初二数学全册知识点总结 1

  实数

  无理数:无限不循环小数叫无理数

  平方根:

  ①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

  ②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

  ③一个正数有2个平方根/0的平方根为0/负数没有平方根。

  ④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

  立方根:

  ①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

  ②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

  ③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

  实数:

  ①实数分有理数和无理数。

  ②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

  ③每一个实数都可以在数轴上的一个点来表示。

  相信通过上面的学习,同学们对实数知识点可以很好的掌握了,希望同学们在考试中取得好成绩。

  平面直角坐标系:

  在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

  水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

  平面直角坐标系的要素:

  ①在同一平面

  ②两条数轴

  ③互相垂直

  ④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

  初二数学全册知识点总结 2

  轴对称

  1.如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

  2.性质

  (1)成轴对称的两个图形全等;

  (2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。

  一次函数

  (一)一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。特别地,当b=0时,y=kx+b(k为常数,k≠0),y叫做x的正比例函数。

  (二)函数三要素

  1.定义域:设x、y是两个变量,变量x的变化范围为D,如果对于每一个数x∈D,变量y遵照一定的法则总有确定的数值与之对应,则称y是x的函数,记作y=f(x),x∈D,x称为自变量,y称为因变量,数集D称为这个函数的定义域。

  2.在函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。

  3.对应法则:一般地说,在函数记号y=f(x)中,“f”即表示对应法则,等式y=f(x)表明,对于定义域中的任意的x值,在对应法则“f”的作用下,即可得到值域中唯一y值。

  (三)一次函数的表示方法

  1.解析式法:用含自变量x的式子表示函数的方法叫做解析式法。

  2.列表法:把一系列x的值对应的函数值y列成一个表来表示的函数关系的方法叫做列表法。

  3.图像法:用图象来表示函数关系的方法叫做图象法。

  (四)一次函数的性质

  1.y的变化值与对应的x的变化值成正比例,比值为k。即:y=kx+b(k≠0)(k不等于0,且k,b为常数)。

  2.当x=0时,b为函数在y轴上的交点,坐标为(0,b)。当y=0时,该函数图象在x轴上的交点坐标为(-b/k,0)。

  3.k为一次函数y=kx+b的斜率,k=tanθ(角θ为一次函数图象与x轴正方向夹角,θ≠90°)。

  4.当b=0时(即y=kx),一次函数图象变为正比例函数,正比例函数是特殊的一次函数。

  5.函数图象性质:当k相同,且b不相等,图像平行;当k不同,且b相等,图象相交于Y轴;当k互为负倒数时,两直线垂直。

  6.平移时:上加下减在末尾,左加右减在中间。

  直角三角形

  1.勾股定理及其逆定理

  定理:直角三角形的两条直角边的等于的平方。

  逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

  2.含30°的直角三角形的边的性质

  定理:在直角三角形中,如果一个锐角等于30°,那么等于的一半。

  3.直角三角形斜边上的中线等于斜边的一半。

  要点诠释:

  ①勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”。

  ②直角三角形的全等判定方法,HL还有SSS,SAS,ASA,AAS,一共有5种判定方法。

  图形的平移与旋转

  1.平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。

  2.平移性质

  (1)图形平移前后的形状和大小没有变化,只是位置发生变化。

  (2)图形平移后,对应点连成的线段平行(或在同一直线上)且相等。

  初二数学全册知识点总结 3

  一.定义

  1.一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,a叫做被开方数。

  2.一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根,求一个数a的平方根的运算,叫做开平方。

  3.一般地,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根,求一个数的立方根的运算,叫做开立方。

  4.任何一个有理数都可以写成有限小数或无限循环小数的形式,任何有限小数或无限循环小数也都是有理数。

  5.无限不循环小数又叫无理数。

  6.有理数和无理数统称实数。

  7.数轴上的点与实数一一对应,平面直角坐标系中与有序实数对之间也是一一对应的。

  二.重点

  1.平方与开平方互为逆运算。

  2.正数的平方根有两个,它们互为相反数,其中正的平方根就是这个数的算术平方根。

  3.当被开方数的小数点向右每移动两位,它的算术平方根的小数点就向右移动一位。

  4.当被平方数小数点每向右移动三位,它的立方根小数点向右移动一位。

  5.数a的相反数是-a[a为任意实数],一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数;0的绝对值是0。

  三.注意

  1.被开方数一定是非负数。

  2.0,1的算术平方根是它本身;0的平方根是0,负数没有平方根;正数的立方根是正数,负数的立方根是负数,0的立方根是0。

  3.带根号的无理数的整数倍或几分之几仍是无理数;带根号的数若开之后是有理数则是有理数;任何一个有理数都能写成分数的形式。

  初二数学知识点

  一、分式

  1、两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式。

  整式A除以整式B,可以表示成的形式。如果除式B中含有字母,那么称为分式,对于任意一个分式,分母都不能为零。

  2、整式和分式统称为有理式,即有:

  3、进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质:

  分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

  4、一个分式的分子、分母有公因式时,可以运用分式的基本性质,把这个分式的分子、分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分。

  二、分式的乘除法

  1、分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

  2、分式乘方,把分子、分母分别乘方。

  逆向运用,当n为整数时,仍然有成立。

  3、分子与分母没有公因式的分式,叫做最简分式。

  三、分式的加减法

  1、分式与分数类似,也可以通分。根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

  2、分式的加减法:

  分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减。

  (1)同分母的分式相加减,分母不变,把分子相加减;

  上述法则用式子表示是:

  (2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;

  上述法则用式子表示是:

  3、概念内涵:

  通分的关键是确定最简分母,其方法如下:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母的最高次幂的积,如果分母是多项式,则首先对多项式进行因式分解。

  四、分式方程

  1、解分式方程的一般步骤:

  ①在方程的两边都乘最简公分母,约去分母,化成整式方程;

  ②解这个整式方程;

  ③把整式方程的根代入最简公分母,看结果是不是零,使最简公母为零的根是原方程的增根,必须舍去。

  2、列分式方程解应用题的一般步骤:

  ①审清题意;

  ②设未知数;

  ③根据题意找相等关系,列出(分式)方程;

  ④解方程,并验根;

  ⑤写出答案。

  初二数学全册知识点总结 4

  分式除法法则:

  分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

  提示:

  (1)分式与分式相乘,若分子、分母是单项式,可先将分子、分母分别相乘,然后约去公因式,化为最简分式;若分子、分母是多项式,先把分子、分母分解公因式,看能否约分,然后再相乘;

  (2)当分式与整式相乘时,要把整式与分式的分子相乘作为积的分子,分母不变

  (3)分式的除法可以转化为分式的乘法运算;

  (4)分式的乘除混合运算统一为乘法运算。

  ①分式的乘除法混合运算顺序与分数的乘除混合运算相同,即按照从左到右的顺序,有括号先算括号里面的;

  ②分式的乘除混合运算要注意各分式中分子、分母符号的处理,可先确定积的符号;

  ③分式的乘除混合运算结果要通过约分化为最简分式(分式的分子、分母没有公因式)或整式的形式。

  初二数学全册知识点总结 5

  一次函数知识点

  一、正比例函数与一次函数的概念:

  一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。

  一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数.

  当b=0时,y=kx+b即为y=kx,所以正比例函数,是一次函数的特例.

  二、正比例函数的图象与性质:

  (1)图象:正比例函数y=kx(k是常数,k≠0))的图象是经过原点的一条直线,我们称它为直线y=kx。

  (2)性质:当k>0时,直线y=kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k0,b>0图像经过一、二、三象限;

  (2)k>0,b<0图像经过一、三、四象限;

  (3)k>0,b=0图像经过一、三象限;

  (4)k<0,b>0图像经过一、二、四象限;

  (5)k<0,b<0图像经过二、三、四象限;

  (6)k<0,b=0图像经过二、四象限。

  一次函数表达式的确定

  求一次函数y=kx+b(k、b是常数,k≠0)时,需要由两个点来确定;求正比例函数y=kx(k≠0)时,只需一个点即可。

  初二数学全册知识点总结 6

  一、函数:

  一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

  二、自变量取值范围

  使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。

  三、函数的三种表示法及其优缺点

  (1)关系式(解析)法

  两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

  (2)列表法

  把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

  (3)图象法

  用图象表示函数关系的方法叫做图象法。

  四、由函数关系式画其图像的一般步骤

  (1)列表:列表给出自变量与函数的一些对应值

  (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

  (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

  五、正比例函数和一次函数

  1、正比例函数和一次函数的概念

  一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

  特别地,当一次函数中的b=0时(即)(k为常数,k0),称y是x的正比例函数。

  2、一次函数的图像:所有一次函数的图像都是一条直线

  3、一次函数、正比例函数图像的主要特征:一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。

  初二数学上学期知识点总结

  不同位置的点的坐标的特征

  (1)、各象限内点的坐标的特征

  点P(x,y)在第一象限:x;0,y;0

  点P(x,y)在第二象限:x;0,y;0

  点P(x,y)在第三象限:x;0,y;0

  点P(x,y)在第四象限:x;0,y;0

  (2)、坐标轴上的点的特征

  点P(x,y)在x轴上,y=0,x为任意实数

  点P(x,y)在y轴上,x=0,y为任意实数

  点P(x,y)既在x轴上,又在y轴上,x,y同时为零,即点P坐标为(0,0)即原点

  (3)、两条坐标轴夹角平分线上点的坐标的特征

  点P(x,y)在第一、三象限夹角平分线(直线y=x)上,x与y相等

  点P(x,y)在第二、四象限夹角平分线上,x与y互为相反数

  (4)、和坐标轴平行的直线上点的坐标的特征

  位于平行于x轴的直线上的各点的纵坐标相同。

  位于平行于y轴的直线上的各点的横坐标相同。

  (5)、关于x轴、y轴或原点对称的点的坐标的特征

  点P与点p’关于x轴对称横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P’(x,—y)

  点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P’(—x,y)

  点P与点p’关于原点对称横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P’(—x,—y)

  等腰三角形判定

  中线

  1、等腰三角形底边上的中线垂直底边,平分顶角;

  2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。

  1、两边上中线相等的三角形是等腰三角形;

  2、如果一个三角形的一边中线垂直这条边(平分这个边的对角),那么这个三角形是等腰三角形

  角平分线

  1、等腰三角形顶角平分线垂直平分底边;

  2、等腰三角形两底角平分线相等,并且它们的交点到底边两端点的距离相等。

  1、如果三角形的顶角平分线垂直于这个角的对边(平分对边),那么这个三角形是等腰三角形;

  2、三角形中两个角的平分线相等,那么这个三角形是等腰三角形。

  高线

  1、等腰三角形底边上的高平分顶角、平分底边;

  2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等。

  1、如果一个三角形一边上的高平分这条边(平分这条边的对角),那么这个三角形是等腰三角形;

  2、有两条高相等的三角形是等腰三角形。

  分式的加减法

  1、分式与分数类似,也可以通分。根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

  2、分式的加减法:分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减。

  (1)同分母的分式相加减,分母不变,把分子相加减;上述法则用式子表示是:

  (2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;上述法则用式子表示是:

  3、概念内涵:

  通分的关键是确定最简分母,其方法如下:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母的次幂的积,如果分母是多项式,则首先对多项式进行因式分解。

  初二数学全册知识点总结 7

  [一次函数]

  一般地,形如y=kx+b(k、b是常数,k 0)函数,叫做一次函数。 当b=0时,y=kx+b即y=kx,所以正比例函数是一种特殊的一次函数。

  [一次函数的图象及性质]

  一次函数y=kx+b的图象是经过(0,b)和(- ,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到。(当b>0时,向上平移;当b<0时,向下平移)

  (1)解析式:y=kx+b(k、b是常数,k 0)

  (2)必过点:(0,b)和(- ,0)

  (3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限

  b>0,图象经过第一、二象限;b<0,图象经过第三、四象限

  直线经过第一、二、三象限

  直线经过第一、三、四象限

  直线经过第一、二、四象限

  直线经过第二、三、四象限

  (4)增减性: k>0,y随x的增大而增大;k<0,y随x增大而减小。

  (5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴。

  (6)图像的平移: 当b>0时,将直线y=kx的图象向上平移b个单位;

  当b<0时,将直线y=kx的图象向下平移b个单位。

  [直线y=k1x+b1与y=k2x+b2的位置关系]

  (1)两直线平行:k1=k2且b1 b2

  (2)两直线相交:k1 k2

  (3)两直线重合:k1=k2且b1=b2

  [确定一次函数解析式的方法]

  (1)根据已知条件写出含有待定系数的函数解析式;

  (2)将x、y的几对值或图象上的几个点的坐标代入上述函数解析式中得到以待定系数为未知数的方程;

  (3)解方程得出未知系数的值;

  (4)将求出的待定系数代回所求的函数解析式中得出结果。

  [一次函数建模]

  函数建模的关键是将实际问题数学化,从而解决最佳方案、最佳策略等问题。 建立一次函数模型解决实际问题,就是要从实际问题中抽象出两个变量,再寻求出两个变量之间的关系,构建函数模型,从而利用数学知识解决实际问题。

  正比例函数的图象和一次函数的图象在赋予实际意义时,其图象大多为线段或射线。 这是因为在实际问题中,自变量的取值范围是有一定的限制条件的,即自变量必须使实际问题有意义。

  从图象中获取的信息一般是:(1)从函数图象的形状判定函数的类型;

  (2)从横、纵轴的实际意义理解图象上点的坐标的实际意义。

  解决含有多个变量的问题时,可以分析这些变量的关系,选取其中某个变量作为自变量,再根据问题的条件寻求可以反映实际问题的函数。

  初二数学全册知识点总结 8

  轴对称图形

  1.把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。

  2.把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点3.轴对称与轴对称图形的性质

  ①关于某直线对称的两个图形是全等形。

  ②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

  ③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

  ④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

  ⑤两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

  全等三角形

  1、全等三角形的性质:全等三角形对应边相等、对应角相等。

  2、全等三角形的判定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等(AAS)、斜边和直角边相等的两直角三角形(HL)。

  3、角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等

  4、角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

  5、证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:

  ①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系)

  ②、回顾三角形判定,搞清我们还需要什么

  ③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。

  1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

  2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

  3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

  4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

  5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

  6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

  7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

  8、多边形的内角:多边形相邻两边组成的角叫做它的内角。

  9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

  10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

  11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。

  12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13、公式与性质:

  ⑴三角形的内角和:三角形的内角和为180°

  ⑵三角形外角的性质:

  性质1:三角形的一个外角等于和它不相邻的两个内角的和。

  性质2:三角形的一个外角大于任何一个和它不相邻的内角。

  ⑶多边形内角和公式:边形的内角和等于·180°

  ⑷多边形的外角和:多边形的外角和为360°。

  ⑸多边形对角线的条数:

  ①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。

  ②边形共有条对角线。

  等腰梯形

  1、等腰梯形的定义

  两腰相等的梯形叫做等腰梯形。

  2、等腰梯形的性质

  (1)等腰梯形的两腰相等,两底平行。

  (2)等腰梯形同一底上的两个角相等,同一腰上的两个角互补。

  (3)等腰梯形的对角线相等。

  (4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。

  3、等腰梯形的判定

  (1)定义:两腰相等的梯形是等腰梯形

  (2)定理:在同一底上的两个角相等的梯形是等腰梯形

  (3)对角线相等的梯形是等腰梯形。(选择题和填空题可直接用)

  菱形

  1、菱形的定义

  有一组邻边相等的平行四边形叫做菱形

  2、菱形的性质

  (1)菱形的四条边相等,对边平行

  (2)菱形的相邻的角互补,对角相等

  (3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角

  (4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。

  3、菱形的判定

  (1)定义:有一组邻边相等的平行四边形是菱形

  (2)定理1:四边都相等的四边形是菱形

  (3)定理2:对角线互相垂直的平行四边形是菱形

  4、菱形的面积

  S菱形=底边长×高=两条对角线乘积的一半

【初二数学全册知识点总结】相关文章:

初二数学全部知识点总结07-09

初二数学下册知识点总结03-05

初一初二数学知识点总结09-20

初二数学知识点总结(精选5篇)08-31

初二数学基础知识点总结大全范文07-30

初二上册数学知识点总结10-09

初二的生物知识点总结08-31

初二物理知识点总结05-14

初二浮力知识点总结08-05