- 相关推荐
高二数学必修知识点总结
在平平淡淡的学习中,大家对知识点应该都不陌生吧?知识点也可以通俗的理解为重要的内容。你知道哪些知识点是真正对我们有帮助的吗?以下是小编为大家收集的高二数学必修知识点总结,欢迎阅读与收藏。
高二数学必修知识点总结1
知识梳理
一、解不等式的有关理论
(1)若两个不等式的解集相同,则称它们是同解不等式;
(2)一个不等式变形为另一个不等式时,若两个不等式是同解不等式,这种变形称为不等式的同解变形;
(3)解不等式时应进行同解变形;
(4)解不等式的结果,原则上要用集合表示。
二、一元二次不等式的解集
三、解一元二次不等式的基本步骤:
(1)整理系数,使次项的系数为正数;
(2)尝试用十字相乘法分解因式;
(3)计算
(4)结合二次函数的图象特征写出解集。
四、高次不等式解法:
尽可能进行因式分解,分解成一次因式后,再利用数轴标根法求解
(注意每个因式的次项的系数要求为正数)
五、分式不等式的解法:
分子分母因式分解,转化为相异一次因式的积和商的形式,再利用数轴标根法求解;
重难点突破
1、重点:从实际情境中抽象出一元二次不等式模型;熟练掌握一元二次不等式的解法。
2、难点:理解二次函数、一元二次方程与一元二次不等式解集的关系。求解简单的分式不等式和高次不等式以及简单的含参数的`不等式
3、重难点:掌握一元二次不等式的.解法,利用不等式的性质解简单的简单的分式不等式和高次不等式以及简单的含参数的不等式,会解简单的指数不等式和对数不等式。
高二数学必修知识点总结2
1.等差数列通项公式
an=a1+(n-1)d
n=1时a1=S1
n≥2时an=Sn-Sn-1
an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b
2.等差中项
由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmeticmean)。
有关系:A=(a+b)÷2
3.前n项和
倒序相加法推导前n项和公式:
Sn=a1+a2+a3+·····+an
=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①
Sn=an+an-1+an-2+······+a1
=an+(an-d)+(an-2d)+······+[an-(n-1)d]②
由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n个)=n(a1+an)
∴Sn=n(a1+an)÷2
等差数列的前n项和等于首末两项的和与项数乘积的一半:
Sn=n(a1+an)÷2=na1+n(n-1)d÷2
Sn=dn2÷2+n(a1-d÷2)
亦可得
a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n
an=2sn÷n-a1
有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1
4.等差数列性质
一、任意两项am,an的`关系为:
an=am+(n-m)d
它可以看作等差数列广义的通项公式。
二、从等差数列的定义、通项公式,前n项和公式还可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N_、若m,n,p,q∈N_且m+n=p+q,则有am+an=ap+aq
四、对任意的k∈N_有Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差数列。
高二数学必修知识点总结3
排列P------和顺序有关
组合C-------不牵涉到顺序的问题
排列分顺序,组合不分
例如把5本不同的书分给3个人,有几种分法."排列"
把5本书分给3个人,有几种分法"组合"
1.排列及计算公式
从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的`排列数,用符号p(n,m)表示.
p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1).
2.组合及计算公式
从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号
c(n,m)表示.
c(n,m)=p(n,m)/m!=n!/((n-m)!_!);c(n,m)=c(n,n-m);
3.其他排列与组合公式
从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.
n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为
n!/(n1!_2!_.._k!).
k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).
排列(Pnm(n为下标,m为上标))
Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n
组合(Cnm(n为下标,m为上标))
Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m
2008-07-0813:30
公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9________
从N倒数r个,表达式应该为n_n-1)_n-2)..(n-r+1);
因为从n到(n-r+1)个数为n-(n-r+1)=r
【高二数学必修知识点总结】相关文章:
高二物理必修三知识点总结06-25
高二政治必修三知识点总结06-08
人教版数学必修二知识点总结05-16
数学必修二每章知识点总结07-14
高一必修数学知识点总结08-05
高二生物必修三知识点总结11-01
高二数学知识点总结11-01
高二数学的数列知识点总结10-24
高一必修1数学知识点总结10-31
高一数学必修一知识点总结05-19