数学学习计划精华[15篇]
时间过得真快,总在不经意间流逝,很快就要开展新的工作了,让我们对今后的工作做个计划吧。我们该怎么拟定计划呢?下面是小编精心整理的数学学习计划,仅供参考,欢迎大家阅读。
数学学习计划1
数与代数部分
1、一、二单元(数的认识和比较)
(1)强调数物体个数的方法:按照一定的顺序和方向数数、做记号、根据物体摆放的规律按群数数等。
(2)加强区分几个和第几个,在表示第几个时要注意说明方向、顺序。如:从左往右数,第2个是()
(3)按顺序填数,按规律填数
(4)加深对0的理解:在不同情境中,0的含义是不同的。一般情况下0表示没有,还表示“起点”和温度计上的“基准”0度。要依据具体情况,判断0的含义。
(5)重视比较方法的梳理:一一对应比较(P17、(1)(2))、
三者之间的比较(先两两比较,再选出最大、多、小、少的)
利用参照物进行比较(P17(4)和P19、5、6)
注意题目规定的符号别标错了
2、三、七单元(数的运算)
(1)利用学具摆一摆、捆一捆,加深对数位和数的组成的'认识。
(2)用丰富的游戏活动使本版块的复习变得不枯燥。游戏是一年级儿童最喜欢的活动。游戏让学生在玩中复习,在复习中玩,在玩与复习相结合中发展。如复习20以内数的认识,让学生玩猜数(小棒有多少根)等游戏,加深数感。又如加减法计算的复习,避免出现单纯的题海练习,让学生厌倦。可以设计爬梯子、找朋友、对口令、开火车、抢答等游戏活动,学生边玩边熟练加减法的正确计算。在本期结束时,学生要达到每分钟能正确计算8道题左右。
(3)重视逆向思维题型的训练,如:()+6=15,尤其是()-7=7,学生容易填成0。
在○里填上“+”或“-”9○6=1516○5=11
(4)对于解决简单实际问题的复习:
①从类型上分包括求和、求差、求部分数。并注意体现三种类型之间的联系,注重系统练习。
如:8个苹果,5个梨,苹果和梨一共多少个?
苹果比梨多多少个?
梨比苹果少多少个?
一共13个水果,苹果有8个,剩下的是梨梨有多少个?
一共13个水果,梨有5个,剩下的是苹果苹果有多少个?
再如:看图列四道算式
②从呈现方式上看可分为形象图、情境图、部分抽象的文字表示。
注意强调计算为问题服务的意识,看清题上要求的是什么。允许部分学生用()表示要求的数。
如:P38,4图1
③应用连加、连减、加减混合解决问题,学生容易理解的是如:P45,1题,动态的呈现形式,包括去掉一部分又来了一部分。较难理解的是P47,4题,这种静态呈现的。
④加强培养学生提问的意识和能力。
3、八单元(认识钟表)
(1)了解自己一天的----,如在什么时候做什么事以及这些事情发生的大概时间。结合生活实例叙述,熟悉生活中常见时间,促使学生关注生活中的时间。
(2)几时刚过和快几时了,容易混淆,加强辨析。
(3)有的钟面上没有数字或只有几个数字,给认读造成一定的困难,这是需要学生自己标出数字认读。
空间与图形部分五单元(位置与顺序)六单元(认识物体)
(1)对基本概念的理解和掌握。两件或多件物品的前后、上下、左右位置关系的正确描述。
如:在最面;在的面;的面是;的面有;从数…
(2)对于相对性的理解:上下、前后、左右的位置不是一成不变的,当物体位置变换或增加、减少物体时,这些位置关系都会发生相应的变化。如:P58,1题中的闹钟,和玩具猫比,它在玩具猫的下面,和模型船比,它在模型船的上面。前后与左右的位置也存在这种相对性。
(3)一年级的学生,确定情境图中物品或人物左右的位置时,都以观察者为标准来确定左右。
(4)加强区分长方体与正方体
(5)面对数量众多的物体,要分类数。养成数时按顺序、做记号、检查验证的好习惯。
统计与概率四单元(分类)九单元(统计)
(1)体验分类结果在单一标准下的一致性、不同标准下的多样性。
如:P53按要求分一分(把序号填在括号里),圈出不同类的物体。
(2)加强学生整理数据的能力。如安排一些图形(各种不同的颜色、形状、大小,摆放位置也无序)
请学生先数一数,再在方格纸内画图,并回答简单的问题。
数学学习计划2
学习教材:高等数学上、下册(同济大学数学系编,第六版),线性代数(同济大学数学系编,第五版),概率论与数理统计(浙江大学盛骤编,第四版)
学习时间:3月份-6月份
学习目的:通过对整个课本的全称学习,掌握考研数学的考点内容
学习方法:参加领航教育的基础导学课程,可以通过导学课程掌握考研复习的学习方法。概念部分:一定要记准了概念,有许多选择题就是由概念引深出来的或者是直接的概念题,并且要理解。公式部分:自己准备个单独的小笔记,把高数、线代、概率里面所有的公式都要整理出来,不是从课本上抄下来,是结合自己的理解来记忆并能灵活的运用。自己要有一个错题集和经典题集,专门用来收集自己错过的经典的题,并标注好知识点。
学习计划:
一、3月24号上午9:00----11:00
不定积分
1.原函数、不定积分的概念;
2.不定积分的基本公式,不定积分的性质,不定积分的换元积分法与分部积分法;
3.会求有理函数和简单无理函数的积分.
定积分
1.定积分的概念和性质,定积分中值定理;
2.定积分的换元积分法与分部积分法;
3.积分上限的函数的概念和它的导数,牛顿-莱布尼茨公式;
4.反常积分的概念与计算;
5.用定积分计算平面图形的面积、旋转体的体积,函数的平均值.
:本章的基础课后习题
二、3月31号上午9:00----11:00
微分方程
1.微分方程及其阶、解、通解、初始条件和特解等概念;
2.变量可分离的微分方程及一阶线性微分方程的解法;
3.齐次微分方程的解法;
4.线性微分方程解的性质及解的结构;
5.二阶常系数齐次线性微分方程的解法;
6.会解自由项为多项式、指数函数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程.
作业:本章的基础课后习题
三、4月7号上午9:00----11:00
来总部阶段测评
四、4月14号上午9:00----11:00
多元函数微分学
1.二元函数的概念与几何意义;
2.二元函数的极限与连续的概念,有界闭区域上连续函数的性质;
3.多元函数偏导数和全微分的概念,全微分存在的必要条件和充分条件,全微分形式的不变性,会求全微分;
4.多元复合函数一阶、二阶偏导数的`求法;
5.隐函数存在定理,计算多元隐函数的偏导数;
6.多元函数极值和条件极值的概念,二元函数极值存在的必要条件、充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值.
作业:本章的基础课后习题
五、4月21号上午9:00----11:00
重积分
1.二重积分的概念和性质,二重积分的中值定理;
2.会利用直角坐标、极坐标计算二重积分.
级数
1.常数项级数收敛、发散以及收敛级数的和的概念,级数的基本性质及收敛的必要条件;
2.几何级数与级数的收敛与发散的条件;
3.正项级数收敛性的比较判别法和比值判别法;
4.交错级数和莱布尼茨判别法;
5.任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系;
6.函数项级数的收敛域及和函数的概念;
7.幂级数的收敛半径、收敛区间及收敛域的求法;
8.幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数;
9.函数展开为泰勒级数的充分必要条件;
10.,,,及的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.
作业:本章的基础课后习题
六、4月28号上午9:00----11:00
行列式
1.行列式的概念和性质,行列式按行(列)展开定理.
2.用行列式的性质和行列式按行(列)展开定理计算行列式.
3.用克莱姆法则解齐次线性方程组.
作业:本章的基础课后习题
对角行列式、上(下)三角形行列式值的结论需要记住,以后直接使用,熟记范德蒙行列式的特点与计算公式
七、5月5号上午9:00----11:00
矩阵
1.矩阵的概念,单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵的概念和性质.
2.矩阵的线性运算、乘法运算、转置以及它们的运算规律.
3.方阵的幂与方阵乘积的行列式的性质.
4.逆矩阵的概念和性质,矩阵可逆的充分必要条件.
5.伴随矩阵的概念,用伴随矩阵求逆矩阵.
6.分块矩阵及其运算
作业:本章的基础课后习题
八、5月12号上午9:00----11:00
总部考试
九、5月19号上午9:00----11:00
向量与线性方程组
1.齐次线性方程组有非零解的充分必要条件,非齐次线性方程组有解的充分必要条件.
2.齐次线性方程组的基础解系、通解及解空间的概念,齐次线性方程组的基础解系和通解的求法.
3.非齐次线性方程组解的结构及通解.
4.用初等行变换求解线性方程组的方法.
5.维向量、向量的线性组合与线性表示的概念
6.向量组线性相关、线性无关的概念,向量组线性相关、线性无关的有关性质及判别法.
7.向量组的极大线性无关组和向量组的秩的概念和求解.
8.向量组等价的概念,矩阵的秩与其行(列)向量组的秩之间的关系.
作业:本章的基础课后习题
十、5月26号上午9:00----11:00
矩阵的特征值和特征向量
1.内积的概念,线性无关向量组正交规范化的施密特(Schmidt)方法.
2.规范正交基、正交矩阵的概念以及它们的性质.
3.矩阵的特征值和特征向量的概念及性质,求矩阵的特征值和特征向量.
4.相似矩阵的概念、性质,矩阵可相似对角化的充分必要条件,将矩阵化为相似对角矩阵的方法.
5.实对称矩阵的特征值和特征向量的性质.
作业:本章的基础课后习题
二次型
1.二次型及其矩阵表示,二次型秩的概念,合同变换与合同矩阵的概念,二次型的标准形、规范形的概念以及惯性定理.
2.正交变换化二次型为标准形,配方法化二次型为标准形.
3.正定二次型、正定矩阵的概念和判别法.
作业:本章的基础课后习题
十一、6月2号上午9:00----11:00
考试
十二、6月9号上午9:00----11:00
随机事件和概率
1.样本空间(基本事件空间)的概念,随机事件的概念,事件的关系及运算.
2.概率、条件概率的概念,概率的基本性质.
3.会计算古典型概率和几何型概率.
4.概率的五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯(Bayes)公式.
5.事件独立性的概念与计算.
作业:本章的基础课后习题
随机变量及其分布
1.随机变量的概念,分布函数的概念及性质.
2.独立重复试验的概念与有关事件概率的计算.
3.离散型随机变量及其概率分布的概念,几种常见的离散型随机变量:0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布.
4.连续型随机变量及其概率密度的概念,几种常见的连续型随机变量:均匀分布、正态分布、指数分布.
5.随机变量函数的分布.
作业:本章的基础课后习题
十三、6月16号上午9:00----11:00
多维随机变量及分布
1.多维随机变量的概念,多维随机变量的分布的概念和性质.
2.二维离散型随机变量的概率分布、边缘分布和条件分布.
3.二维连续型随机变量的概率密度、边缘密度和条件密度.
4.随机变量的独立性及不相关性的概念,随机变量相互独立的条件.
5.二维均匀分布,二维正态分布的概率密度,求理解其中参数的概率意义.
6.两个随机变量简单函数的分
作业:本章的基础课后习题
十四、6月23号上午9:00----11:00
考试
十五、6月30号上午9:00----11:00
随机变量的数字特征
1.随机变量数字特征:数学期望、方差、标准差、矩、协方差、相关系数的概念.
2.会运用数字特征的基本性质,并掌握常用分布的数字特征.
3.随机变量函数的数学期望.
4.切比雪夫不等式.
作业:本章的基础课后习题
大数定律和中心极限定理
1.切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).
2.棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理)
作业:本章的基础课后习题
样本及抽样分布
1.总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念.
2.分布、分布和分布的概念及性质,上侧分位数的概念并会查表.
3.正态总体的常用抽样分布.
作业:本章的基础课后习题
矩估计和最大似然估计
1.参数的点估计、估计量与估计值的概念.
2.矩估计法(一阶矩、二阶矩)和最大似然估计法.
作业:本章的基础课后习题
7月1号到20号,自己将学习过程中得重点难点整理到笔记上,然后把练习时做过的错题重新做一遍,并把对应的知识点复习一遍,以便暑期能跟上强化班的进度。
7月底到8月中旬:暑假强化班
学习难点:可能第一遍复习完,老师刚讲过的题当时听明白了,课下回去做得时候还是没有思路或者出错,这是很常见的现象,这时候要把知识点定位,然后回想老师对知识点的解说,或者看看课本例题,一定不要浮躁,要理解知识点,不只是套公式,灵活的运用。
数学学习计划3
转眼间,一个快乐的暑假过去了,我们再次回到了学校,开始了我们的三年级的学习学习,这个学期我给自己制定了一个新的计划:
1、每天早晨,我要早早的来到学校,完成老师早晨的作业。
2、上课时认真听讲、力争把老师当堂课讲的'知识全部弄懂、懂得,并虚心向老师、同学请教。
3、认真完成好老师布置的课堂作业、课后作业和家庭作业。
4、回家后,认真预习功课,把不懂的问题记录下来,第二天上学把问题下课问同学。
5、讲文明、懂礼貌,团结友爱,热爱劳动,关心集体。
6、我要每天早睡早起,讲卫生爱干净,自己的事情自己做。
7、每天坚持体育锻炼,积极参加学校的体育活动。
8、每天学习完成后自己准备第二天的学习用品。 以上就是我的新学期的新计划,请老师和爸爸妈妈放心,我会争取做一名德智体全面发展的好孩子。
数学学习计划4
第一阶段:从3月到6月看课本,主要是高数课本,做微分、积分的课后习题。线性代数可以适当的看课本,个人认为课本参考意义不大,李永乐的书太详细了,可以不用看课本。概率论直接看全书或者其他指导书籍即可,概率课本(浙大版)可以当做参考书籍,里面的公式推导可以好好看看,其余的内容看全书即可。
第二阶段:七月份之后,开始第一轮复习,即非常仔细、系统的看全书,从高数、线代和概率看(可以三门同时进行,也可以一直复习一门,个人建议一直复习一门)。可以看视频也可以不看视频,视频的话个人建议基础薄弱的可以选择汤加凤的,基础好的可以选择张宇的,这个看个人。大概到9月中旬,两个半月的时间,把数学全书完整的看一遍。然后就是开始做题,题目可以选择张宇1000题或者660题,题目不需要买多,主要是做懂做通,个人比较喜欢660题,大概每天50题加核对答案加落实,这样半个月左右可以把660题做一遍。
第三阶段:10月份后,进入第二轮复习,第二轮复习主要就是查缺补漏,所谓的漏就是第一轮不太好的,记不住的,以及660里不会的题目。二轮复习可以使用张宇的高数18讲配合张宇的视频,线代继续刷李永乐全书上的以及配合张宇的9讲使用,概率论可以直接使用张宇的9讲。二轮复习会进行的很快,大概也就1个月多一点点的.时间能复习完。二轮复习完毕后,应该对知识体系框架,以及大部分的知识点掌握了。
第四阶段:11月10号左右,就要进入真题的训练了,复习的好多,可以一天做一套题,做题加核对答案总结等。(建议不要把真题做在那本真题上,用一个本子或者A4纸做,这样方便回顾以前不会的知识点,也可以打印标准答案纸,用答题纸做)。真题的训练,请严格按照考研时间来,不要分散做,那样效果不好。真题很重要,也很珍贵。从20xx年开始就行,一般做15年的 即可。这样快的人20天就能把真题刷一遍,慢的人就一个月。之后请自行根据欠缺的知识点,查缺补漏,做好笔记。真题建议选择《张宇30年真题全解》。
第五阶段:剩下的最后一个月的前10天,可以再做做课本里面的微积分题目,训练计算能力,也可以找一些其他模拟卷做。
12月10号之后,可以开始做第二遍数学真题,第二遍做起来很快了,请依旧用A4纸或者本子做题。
最后一到两周,有一套叫做合工大超越五套卷和合工大共创五套卷的东西。个人认为在所有出版的模拟卷以及考研机构的模拟卷里面,这两套是最好的。特别是合工大共创五套卷,是和考研真题出题思路最接近,难度也是最接近的题,具有相当高的参考价值,曾经该卷也是命中过原题的。最后祝各位考研学子考研顺利!
数学学习计划5
高三数学学习可以分为三个阶段:
1.一轮复习(至20xx年元旦前后):
夯实基础,构建知识体系,强化能力训练;
2.二轮复习(从一轮结束至三模结束):
固化与应用,优化思维模式;
3.考前冲刺(考前一个月):
巩固已知,调整状态。
4.一轮复习特点:
时间长,任务重,此特点与《课程标准》中“培养学生实事求是的态度,锲而不舍的精神”吻合;学生易懈怠、易迷茫、易焦虑。
一轮复习数学资料:一轮复习讲义、教材(10本)、章节测试、xx年——xx年高考试题分类汇编、xx套模拟试题、20xx年高考真题。
一轮复习着重从知识、方法、能力、技巧四方面入手,为实现二轮复习“数学思想统领学习”的目标做下坚实基础。知识与方法可以跟随老师的讲解及时整理记忆,与原有知识结构实现对接,实现知识与方法的零死角;能力的提升需要自己细致扎实的练习与思考,基础能力:总结反思、语言表达、阅读理解,学科能力:空间想象、抽象概括、推理论证、运算求解、数据处理;技巧是从勤勉的实践中点滴积累起来的,是反复感知与应用后沉淀下的极其实用的小绝招,每个个体总结的技巧是不尽一致的。
一轮复习思路千百种,现仅从“如何搭配练习册及试卷的应用”的角度对一轮复习大致框架加以论述:
1.无论复习哪一学科,都要有一个系统的练习过程,认准一本复习资料加以练习不放松。课堂上,按照拟好的'“主线”进行复习,“函数、几何、概率统计、运算、算法、数学应用”六条主线将课标内容纵横交织,打破资料章节顺序,优化组合串讲课标所要求考点。
2.新课标精神的直接体现就是教材,重读教材意义重大。要读初学时未关注的细节,要关注数学概念、法则、结论的发展过程。教材上练习题不必每道必做,根据实际情况,有选择地挑出一些必做题。我将依照教材内容组织一张练习卷,尽可能检验出大家对教材的熟悉程度及理解的深度。
3.必备的章节模拟训练是不可少的,一段时间的复习后来个小测验,及时对所学有一个检验,也时刻提醒我们要注意多回头看看。章节测试所用试题由我为大家提供,在每个章末测试一张卷,限时训练,之后,学生再进行局部弥补性练习。
4.前几年的高考题就是最好的模拟题,去年暑假始,我们已着手做“分类汇编”,一轮复习时,紧跟模块复习完成“分类汇编”上尚未完成的任务,并且从做过的试题中寻找规律性的东西也是必须面对的任务。
5.一轮复习战线过长,不对过往重点知识加以多次循环则不能识其本质。天利38套的应用:每周每个同学利用课余时间写一套模拟题,每周日晚上“就题论题,不举一反三”。目的:化整为零,保持新鲜感,给学生以充分思考交流的空间和时间。计划进行20周,余下的试卷由学生自行处理。
6.不能急于完成“20xx年高考真题”,我们可以使其发挥更大利用价值。将这19套真题作为一个研究平台,我们要逐一细致分析试卷的规律性。从哪些角度分析?分析什么内容?如何利用分析结论?这些都会使我们的思考更有条理,使我们的表达更清晰。
数学学习计划6
一、平时学习
1.课前认真预习。预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十。带着预习中不明白的问题去听老师讲课,来解答这类的问题。预习还可以使听课的整体效率提高。
2.让学与练结合。在数学课上,光听是没用的。当老师让同学去黑板上演算时,自己也要在草稿纸上练。如果遇到不懂的难题,一定要提出来,不能不求甚解。否则考试遇到类似的题目就可能不会做。听老师讲课时一定要全神贯注,要注意细节问题,否则“千里之堤,毁于蚁穴”。
3.课后及时复习。写完作业后对当天老师讲的内容进行梳理,可以适当地做些的课外题。可以根据自己的需要选择适合自己的课外。
4.单元测验。这是为了检测近期的学习情况,其实分数代表的是你的过去,关键的'是对于每次考试的总结和吸取教训,要及时做到“课后复习”。
二、考试技巧学习
在选择、填空、计算题上是不能丢分的。在考数学的时候思想不能开小差,遇到这种题目要沉着冷静,利用题目给你的一切条件进行分析,多做题有一定作用,但上课听讲、认真答题及提高准确率、总结经验才是最重要的。还要将所学的知识用到生活中去,做到学以致用。
三、假期学习
1.回顾整个初中阶段的数学内容,梳理成“数学网络图”,将所有学过的数学知识分个类。在整理的过程中,如果有新的疑惑、新的体会都应该做下记录,“数学网络图”的形式不限。
2.今年有xx,根据某一个方面,设计一些容易操作的问题,进行一次社会调查;调查的对象要有代表性和广泛性。就调查的目的、问题设计的思路、操作调查的设计、调查过程中的体会、调查的结果,形成电子稿和书面稿,做好开学初的交流准备。
3.扑克牌中蕴含了许多有趣的数学知识,假期休闲的时候,和父母共同认识一下扑克牌,再来点思维挑战:算算24点。开学后,带着问题和同学、老师交流。要知道,初中阶段的数学学习,重点就是培养清晰、敏捷的思维过程,以及合作交流的能力。
4.利用假期的时间每天坚持做两三道奥数题,这是锻炼思维的最好方式。数学思想方法的训练不仅是解几道题,还包括数学文献、数学发展史、数学家故事,甚至还有数学成语、数学谜语等;利用假期可以扩大数学阅读面,并融入自己的思考。
数学学习计划7
数学作为一门基础学科,对于我们的生活和工作都有着重要的意义。在当今数字化和信息化的时代,数学更是扮演着越来越重要的角色。因此,学好数学是我们每个人都需要面对的任务。但是,如何制定一份科学合理、有效实施的数学学习计划呢?本文将探讨这个问题。
一、明确学习目的和方向
无论是初中生、高中生还是本科生,都需要学习数学。但是每个人所需学习的数学知识和技能又有所不同。我们需要根据学生自身情况,并结合未来的学业或职业规划,明确自己所需学习的数学内容和目标。比如,初中生需要学习初中数学的基础知识和解题技巧; 高中生则需要深入学习数学的理论知识,掌握高等数学的应用;而本科生则需要进一步加深对数学理论的理解,同时掌握各个领域中数学在实际问题中的应用。明确了学习方向和目的以后,我们就可以着手制定具体的学习计划。
二、合理安排学习时间
合理的学习时间安排,可以让我们更好地利用时间,提高学习效率。我们需要首先算出自己一天总共有多少时间,然后根据自己的生活和学习情况,描绘出一张详细的时间表。在安排好必须的生活和学习时间之后,可以逐步增加一些预留时间,逐渐提高自身的学习时间和精力。
三、分析自身情况
在制定学习计划之前,我们需要先了解自己的学习情况和学习诉求。具体来说,我们需要根据自己的认知能力和学习驱动力,调整自己的学习节奏和难度。一般来说,学习计划可以分成两种类型:计划深度较浅,但时间上较为充裕的.计划;或者是计划深度较深,但时间上较为紧张的计划。我们需要通过分析自身及学习目标,选择适合自己的类型。
四、制定详细和具体的学习计划
为了让学习计划更加详细和具体,我们可以采取以下的方法:
(1)划分时间段。对于每项学习内容,按照其难易程度与重要程度,划分不同的时间段。然后在做好规划表的同时,要保证时间实际可行,必须考虑到健康、饮食、通勤、休闲等后勤及固定的学业任务;
(2)优先完成重要或难点的任务。我们可以先完成最重要或最难的学习任务,然后再完成其他任务。这样可以确保我们有足够的时间和注意力去处理那些重要的任务,而不是把其放在最后的时候不予以重视或一刀不剪地 敷衍了事。
(3)学习内容的细化和分解。在细化逐个的知识点后,可采用概念、习题集、练习等多种形式,逐步推进学习内容,避免过于单调和沉闷的学习过程。
(4)课程掌握情况的记录。我们可以通过笔记、参考书籍、网上教学课程等,记录自己的学习情况和掌握程度。这些记录可以帮助我们及时地发现学习的缺点和不足之处,使我们能够及时调整学习方法和路线,从而更好地提高学习效率。
五、多种形式、多元化的复习
在制定完学习计划之后,我们还需对自己的学习成果进行复习和巩固。这个过程中,我们建议采用多种形式的复习方式。例如,做题、做笔记、写总结、看视频等多种方式实现复习。在这个过程中,针对不同的知识点、重点难点,我们可以采用不同的复习策略和方法,如精讲重点、疑点解析、归纳总结等。
六、及时总结和反馈
及时地对自己的学习情况进行总结和反馈,可以帮助我们更好地进一步提高自己的知识水平。我们可以对自己的学习进展和结果进行反思和总结,分析自己所面临问题和难题,并及时向他人求助或寻求帮助。在反馈的过程中,我们可以通过写作、短视频、口头表达等形式,把自己所学到的知识与经验分享到他人中,从而促进自己的学习效果和价值。
总之,制定好一份科学合理、有效实施的学习计划,才能让我们的学习达到事半功倍的效果。相信只要我们在实践过程中逐步完善自己的学习计划,努力提高自己的学习能力和耐心,就能够成功地学好数学。
数学学习计划8
就学习时间而言,学生必须坚持在休息后每天抽出一定的时间进行学习。每天学习数学的时间不一定长,大概一个小时左右。关键在于每天这一个小时的时间一定要保证,数学的学习不能暴露在极寒中。你要知道,连续四天每天学习一个小时的数学,和一天连续四个小时学习数学,然后接下来三天完全不学习的效果是完全不一样的。在保证学习时间的同时,大家也要注意学习效率。在学习的过程中,不要急躁。学生要保证每天一个小时的学习被吸收。
其次,说一下学什么。
一、关注课本知识:
任何学科的学习都是如此,数学也不例外。数学中的`这个“祖宗”就是课本,因为所有的学习知识都来自课本,考试的内容比课本要高一些,但是基础知识点不会变。考题是课本知识的衍生品。要一点一点挖掘考题背后的东西,找出哪一部分是考试的重点。所以,课本不能丢。不能一味的做一些试题,而忽略了课本的根本。尤其是在学习新知识的时候,一定要确定自己理解了课本的知识点和例题,认真做好书后的每一道习题,这样才能基本掌握这部分知识。
到了暑假,相信很多同学都会预习一下要学的东西。很多同学在预习数学的时候有一个误区,就是认为我是看完一本书才预习的。我觉得只有在看书的基础上能把课本各节的配套习题解出来,才算真正的预习,因为数学知识的掌握终于合适了,现在在解题。
二、学会正确:
在学习数学的过程中,每个人都会犯错误。犯错是正常的,并不可怕。可怕的是很多同学一错再错,这涉及到正确的问题。暑假比较充裕,是我们的好时光。但是,数学错误的改正,绝对不是简单的用红笔把数字改正。正确的做法是,先找出自己错在哪里,是自己对题目的分析有问题,还是计算的过程中有错误。其次,你要把自己的错误记在心里,时不时地加强记忆,纠正头脑中的错误想法。有条件的话,家长可以把孩子每天的错误抄在单本上,定期让孩子再做一遍,效果会更好。
三、做好总结:
学后总结是学习的重要一环,总结是知识升华的过程。很多同学也知道总结,但是很多人不知道需要总结什么。在这里,我建议同学们利用暑假总结以下几点。
1.总结旧知识的知识结构。数学每一章都有知识体系。大家要总结这个知识体系,用它来记忆和掌握数学的各种定理和知识点。
2.总结一下自己的一些易错点。可以回忆一下自己犯过的错误,看看自己哪里有重复的问题。往往反复出现的问题都是自己的学习漏洞。如果计算有问题,要加强自己的计算能力。如果你的知识有漏洞,就要重新复习知识,适当的用你的知识做一些练习。
总之,要想取得好的学习成绩,毅力和好的学习方法缺一不可,数学也不例外。也可以利用假期总结一些适合自己的学习方法。
数学学习计划9
三年级的奥数学习是小学奥数最重要的基础阶段,只有牢固掌握了三年级奥数最基本的知识技巧,才能有效的促进今后的数学学习。三年级是学习奥数至关重要的时期,三年级也是开拓思维的时间。孩子已经掌握了基本的计算能力,逻辑思维能力等,对图形也有一定的认识。
从三年级起,大量的奥数专题便开始有所接触,因此,在专题的学习初期一定要打下良好的基础,好多五六年级专题知识学习比较差的`学生正是因为三四年级基础知识没有学好的缘故。
三年级不可小视——小升初的序幕开始慢慢拉开!它是考证的前奏、能力培养的起点、重点校培训班的开始,从三年级开始各个重点校开始通过培训班的形式筛选精英,好多孩子就会选择一些好的培训学校像新东方优能中学,提前进行培养,并且为考进重点校做准备。
1、 打好计算基础
三年级奥数课本系统的介绍了四则运算及其巧算,关于数的计算是比较枯燥的内容,但它同时也是学好奥数的基础,是历次竞赛或选拔比赛中都必不可少的组成部分。
就我校各位老师教学经验表明,在二、三年级打下良好运算基础的同学,一方面使得学生今后的数学学习更加轻松,另一方面,在高年级竞赛或选拔中往往会有相当大的优势。
2、重视应用题
从三年级起,奥数课本中介绍了大量的奥数专题知识,尤其是应用题部分,是所有年级所有竞赛考试中必考的重点知识。学生一定要在各个应用题专题学习的初期打下良好的基础。
现在许多五六年级同学奥数水平提高非常困难,就是因为他们三年级的奥数专题知识掌握的不牢靠。
3、掌握正确方法
在学习计算的基础上,三年级逐步引入了基本应用题,简单图形问题等奥数知识,面对突然增大的奥数信息量,学生可以有意识的培养自己复习。
总结等良好的学习习惯;同时,三年级是学生培养自己的奥数学习方法的最好时间。在三年级接触学习大量奥数知识的前提下,有意识地培养自己的学习方法对今后的奥数学习有非常重要的帮助。
数学学习计划10
一、复习目的
1、使学生进一步理解和掌握所学知识,使之更加系统和完善。
2、使学生进一步巩固和提高所学知识,并能应用所学知识解决一些实际问题。
3、使学生打好数学基础,提高学习能力,培养学习习惯,做好中小衔接准备。
二、复习原则
1、充分调动学生自主学习的积极性,鼓励学生自觉地进行整理和复习,提高复习能力。
2、充分体现教师的指导作用,知识的重点和难点要适时讲解点拨,保证复习效果。
3、充分体现因材施教分类推进的教育原则,针对不同层次的学生设计不同的教学内容和教
学方法,查漏补缺,集中答疑,提高复习效果。
三、复习方法
带领学生按单元整理复习,巩固基础知识。
教师要按单元抓准知识的重难点,进行相关知识的整合与链接,使之形成完整的`知识网络。例如应用题的复习,可由简单的分数应用题链接到稍复杂的复合应用题,将知识整合链接起来,进一步理解数量之间的关系,提高分析解答应用题的能力。
2、加强计算能力的训练
平时教学中发现学生的计算能力普遍较低,特别是六(4)班,所以在复习的时候要特别加强计算能力的训练。学生计算能力的训练不只是机械重复的练习,而是要让学生掌握正确的计算方法和策略。让学生记住“一看二想三算”看清题目中的数、符号;想好计算的顺序,什么地方可以口算什么地方要笔算,哪里可以简便计算;最后动笔算。
3、加强与实际的联系
适应新课标的精神加强知识的综合应用以及与生活的联系,提高学生解决实际问题的能力。
4、讲练结合
有讲有练,在练中发现问题。
5、分层指导
针对学生的具体情况有针对性的进行复习,对于中差生和优生在复习上提出不同的要求,复习题分层,指导分层。
四、具体安排
第一阶段:整体复习各个单元基础知识和能力的复习(书上总复习)
1、分数乘、除法及其四则混合运算
2、稍复杂的分数应用题
3、百分数及应用题
4、圆的周长和面积
第二阶段:综合练习,讲练结合(综合试卷)
给学生一些综合性的测试卷,通过练习发现问题,并及时进行指导。
第三阶段:分层复习,查漏补缺
给后进生特别的辅导和指导,查漏补缺。给优等生多做一些实践性较强的习题,提高分析解答能力。
数学学习计划11
数学在现代科学技术中有着非常重要的地位,因此,数学教育也被越来越多的人所关注。本文将从以下几个方面探究《数学教育概论》,并给出学习计划。
一、数学教育的意义
数学教育,在很大程度上决定了未来学生的发展能力。数学教育不仅能够培养学生的计算能力、逻辑思维和分析思维能力,更能够提升学生的空间想象力和创新能力。同时,数学教育也有助于帮助学生准确地领悟数学的应用,促进其分享和交流有关于数学的知识。
二、数学教育的内容和特点
数学教育的内容,在很大程度上是由学生当前所表达出来的数学问题所决定的。数学教育的内容应该是清晰而明确的,既能够根据不同的学生能力,提供不同的`数学教育内容,又能够培养学生的数学思维能力和实践能力。数学教育的特点是以学生为中心,为学生提供更具有启迪性和灵活性的教育方式,促进学生对数学的兴趣和探究,使其更加全面地掌握其知识。
三、数学教育的改革和实践
随着科学技术的不断发展,数学教育也迎来了一个新的时代。数学教育的改革应该采取有利于培养学生创新能力和探究精神的教育方式,例如现代数学教育、创意数学教育、课程无地图教育等。这些教育方式的实践可以促进学生的思维能力,并为学生提供更具有启发性的课程内容,使学生更加全面地掌握数学知识。
四、数学教师的素质要求和发展策略
对于实践的数学教师,他们有着更高的素质要求。数学教师应具备创新、领导、合作、实践和应用等方面的能力,同时应该具备良好的教育理念,注重学生的个性发展和教育实践。数学教师的发展策略,应该采取多样化的知识和实践方式,如参加教学信息化研讨会、进行数学教学活动设计,还要加强业务能力的培养,形成较为完善的数学教师培训方案,不断提升教师的教育能力。
综上所述,数学教育概论的内容之丰富,使其成为了数学教师和教育工作者必须要学习的一门学科。在学习过程中,我们不仅要关注数学教育的意义、内容和特点,还要关注数学教育的改革和实践,以及数学教师的素质要求和发展策略,进而全面了解现代数学教育理念和现代数学教育技术的发展。
数学学习计划12
数与代数
一、数的认识(10课时)
(一)数的意义、读法和写法。——3课时
1、掌握自然数、整数、小数、百分数的意义。
2、掌握十进制计数法和整数、小数数位顺序表,能正确读写数。
(二)数的改写和大小比较。——3课时
1、明白改写和略写的区别,掌握改写和略写的方法。
2、能根据要求熟练地求一个数的近似数。
3、能正确进行分数、小数、百分数的互化,并比较大小。
(三)因数、倍数与分数、小数的基本性质。——4课时
1、理解因数、倍数、公因数、公倍数、最大公因数、最小公倍数、质数、合数、互质数的要概念。
2、能用多种方法找出两个数或三个数的公因数、公倍数、最大公因数和最小公倍数。
3、熟练掌握2、3、5的倍数的数的特征。
4、理解分数、小数的基本性质,并运用这些性质进行分数的通分、约分和化简。
二、数的运算(6课时)
(一)四则运算的意义和法则。——3课时
1、理解四则运算的意义和法则,记住并正确运用四则运算的各部分之间的关系。
2、熟练进行四则运算,提高计算本事。
(二)四则混合运算和运算定律的运用。——3课时
1、掌握运算顺序,正确进行计算。
2、能正确运用运算定律,使计算简便。
三、式与方程(5课时)
1、理解并掌握用字母表示数的意义和方法,能用字母表示常用的数量关系、运算定律、计算公式。
2、根据字母所取的值,算出包含字母的式子的值。
3、进一步理解方程的意义,能熟练地解方程,并能运用方程解决问题。
四、常见的量(4课时)
1、掌握长度、面积、体积、容量、质量、时间几个常见的计量单位,及各单位间的进率和换算方法。
2、能进行单名数和复名数之间的互换。
五、比和比例(5课时)
1、理解比的意义和比的.基本性质,能熟练地求比和化简比。
2、理解比与分数、除法之间的关系。
3、理解比例的意义和基本性质,能熟练地解比例,掌握比例尺的有关知识,理解正比例、反比例的意义确定成正、反比例关系的量,并运用这些知识解决实际问题。
空间与图形
一、图形的认识与测量(8课时)
1、认识所学的平面图形与立体图形。
2、掌握所学平面图形的周长、面积计算公式,并能应用公式熟练计算图形的周长和面积。
3、掌握所学立体图形的表面积、体积和棱长和的计算公式,并运用公式熟练计算。
4、体验图形的测量方法。
二、图形与变换(3课时)
1、理解对称、平移、旋转的含义。
2、能熟练地确定对称图形,会画轴对称、平移和旋转图形。
3、能运用所学的知识设计简单的图案,并解决一些实际问题。
三、方向与位置(3课时)
1、根据实际情景,能熟练地确定比例尺,并画出方位示意图。
2、会根据方向的距离确定物体的位置。
3、会描述简单的路线图。
4、能在方格纸上用数对表示物体的位置,并能运用数对知识表示具体情境中物体的位置。
统计与概率
1、能读懂简单的统计表,并根据统计表供给的信息分析问题、提出问题、解决问题。
2、能从实际生活中收集信息,并选择适宜的统计图,直观有效地表示数据。
3、理解平均数、中位数、众数的意义,并能熟练地求出一组数据的平均数、中位数和众数。在生活中,能选择适宜的函数,恰当地表示一组数据的状态。
4、能设计简单的统计活动,并根据统计结果作出确定和预测。
5、体验事件发生的可能性与公平性,会求一些简单事件发生可能性的概率,并根据可能性的知识,设计游戏方案。
综合应用
1、综合应用所学知识解决相关的实际问题,比称物体(等量代换)、打电话、植树问题、抽屉原理,鸡兔同笼等,感受数学知识间的相互联系,体会数学的作用。
2、获得一些运用数学知识解决实际问题的活动经验和方法。
3、根据复习清况查漏补缺,模拟测试。
数学学习计划13
为了在数学期末考试中取得好成绩,制定一个科学合理的学习计划是非常必要的。然而,怎样制定科学合理的数学期末学习计划呢?本文将根据实际情况,以三个方面进行详细阐述。
一、制定具体可行的学习目标
要制定具体可行的学习目标,需要根据课程的教学计划和学习内容,结合自身的情况,制定可执行的学习计划。一般来说,可分为大目标和小目标两个方面。
大目标是对整个学习过程的总体把握,需要精细刻画,从而使得整个学习过程更加有针对性和可实现性。小目标则是细化了大目标的具体拆分,使得学习过程的重点更加明确,目标范围更加明朗。
例如,在制定一个可以实施的大目标时,可以根据自己的情况,列出像“本次期末考试要取得A+的好成绩”这样的目标。而在制定小目标时,可以根据实际情况,逐渐明确到该考试需要掌握哪些知识点、哪些习题,逐一试练,达到优良的成绩。
二、合理安排学习时间,与人性排挤差距
合理安排学习时间,是自主学习与教学相结合最关键的部分之一。在制定学习时间时,需要根据自己的实际情况,如考试时间、课程节奏、每门科目的分量、自己的学习习惯等等进行综合考虑。
减少时间的浪费,培养积极学习的态度,是制定一个合理的学习计划的另一个关键。阻止自己在手机、电视等非必需品上的过多时间使用,这样就可以释放大量时间用于学习。同时,建立一个合适的学习环境,提高自己的学习效率,也是必不可少的。
三、合理使用学习资源,充实自己的`学习过程
在制定最新数学期末学习计划的过程中,不仅要依据各种书籍、辅导材料来进行学习,还可以利用各种现代化教育资源,如线上课程、公开课、知识问答等等。在详细了解了各种学习资源后,选择适合自己的学习资源,有助于更好地学习,同时还可以充实自己的学习过程,提高自己的认知水平和学习兴趣。
综上所述,一个科学合理的数学期末学习计划至关重要,这也是衡量每个同学考试成绩能力来源的关键。因此,需要根据实际情况,制定具体可行的大目标和小目标,合理安排学习时间,获得适合自己的学习资源,加强自己的学习效果,从而让学习的过程变得更加顺畅,学习成果越来越好。
数学学习计划14
一、制订数学学习计划的必要性
大学学习进入到高年级阶段后,很多学生都会有考研的想法,有些学生由于考研准备工作做得早,做的扎实,在复习应考阶段显得有条不紊,井然有序,这部分学生往往在考试中都能取得较好的成绩,也有一部分学生在大一、大二阶段没有什么考研的准备,到了高年级才萌生了考研的想法,研究生招生考试一般包括5门课程,这部分准备较晚的学生在迎考的复习阶段总是匆匆忙忙的,一天到晚忙不过来,为了复习好应考的科目,每天的学习时间利用得很充分,甚至占用其他课程的上课时间搞复习,还有一部分学生干脆不来教室上课。各高校高年级学生的到课率较低是一个普遍的现象,这一现象虽说不能完全归咎于考研所至,也不能排除考研的影响。
对于想报考理科专业的学生来说,一般都要考高等数学这门课。高等数学属于公共基础课,是理科学生的必修课,在教学计划的全部课程中高等数学无疑是最难学的,很多学生对于这门课往往都会有畏难情绪,尤其是理科基础较差的学生学习起来的确困难,于是相当多的学生在报考时往往选择不需要考高等数学的专业。
一般来说,高等数学安排在大学一年级学习,大二以后一般的理科专业不再开设数学一类的课程,到了大三年级,很多学生的高等数学知识也忘得差不多了,如果该课程当时学习的不够好,情况会更糟糕。近一些年我们经常辅导学生的数学,和他们交流学习方法,帮助他们制订学习计划。就考研的结果来看,很多学生在考试中取得了满意的成绩。
二、数学学习计划的大体框架
考研计划一般从大三阶段开始,有将近一年半左右的时间准备,由于研究生招生考试的科目较多,涵盖的范围很广,要想在考试中考出好的成绩,每个科目都得准备充分,因而留给数学复习的时间就不多,所以,学习计划的制订是否合理就显得尤为重要。我们认为总的学习进度可以划分为起步、巩固、强化和冲刺四个阶段进行,通过这一过程的学习一般都能获得满意的效果。
1.起步阶段
数学学习具有基础性和长期性的特点,首轮学习的目的是全面夯实基础。近一些年来,随着形势的发展,各高校对教学计划进行调整,开设了很多新的课程,适当地压缩了一些传统课程的教学课时。各高校高等数学课程一般根据专业的要求进行教学,学习内容体现了专业特点,基于教学时数的限制,只能对教学内容作一些取舍,这样导致学生没能全面系统地学习该课程。因此考生应根据报考学校及报考专业对高等数学的要求,补充学习未学的部分,完善学习内容。本轮复习主要使用本科阶段的基础教材,外加一些适合首轮复习的辅导资料。对于数学基础且自学能力都较差的学生可以选择长期班或预备班来给自己充电。此阶段的重点在于先系统学习教材,全面整理基本概念、定理、公式及其基本应用,一边开始大量做题。这一轮学习一般要用去一个学期的时间。
2.巩固阶段
上一轮的学习主要是夯实基础,通过学习,学生基本上恢复了该门课程的知识,完善了学习内容,然而仅仅靠这一轮的基础学习还是不够的,对学科内容是如何联系的了解不多,还不能从这门学科的整体角度来把握,学好一门课程应该能融会贯通,因此,这一轮的反复尤为必要。值得注意的是这一阶段学习中一定要从联系的角度看问题,深刻理解基本概念、基本原理。本阶段任务是对该课程进行总体逻辑框架上的整理,建立起整个专业知识体系,这一阶段复习采用的学习资料同上,一般要用半个学期的时间。
3.强化阶段
这一阶段关键要完成两个任务:一是从全面基础复习转入重点复习,对高等数学的重点、难点进行提炼和把握;二是将已经掌握的'知识转化为实际解题能力。相对于上两个阶段来说,本阶段的复习时间相应的有所减少,做题数量也不可能很多,因此要在前两期大量练习的基础上,回头总结、归纳,反复揣摩典型习题,提炼解题规律。本阶段任务是按专题归纳整理知识内容,学习时间约半个学期。
4.冲刺阶段
本阶段的主要目的是经过前几个阶段复习后用正规考试来检测一下复习效果,以便发现问题,及时调整本阶段复习计划,同时也有助于增加实战经验。主要任务是逐步恢复做题练习量,进行模拟训练,进一步提高解题速度和准确率,使解题状态上升,最好能在考试时达到最佳点。本阶段的重点一是归纳总结,升华提炼,查漏补缺,二是强化应试能力训练。
三、迎考学习计划中的几个注意问题
1.学习计划应分阶段进行
考研复习的时间跨度长,整个复习时间往往长达1年以上。如果缺乏一个总的学习规划,就很容易前松后紧、顾此失彼。整个学习计划必须划分成不同阶段,反复进行几轮复习,并针对不同阶段的特点安排复习任务,按部就班,有条不紊地进行。在学习阶段的划分上没有必要千篇一律,什么时候开始这个计划、各个阶段的时间长度多少适宜等问题可根据个人的实际情况作一些调整,灵活掌握。要注意整体学习计划与阶段学习计划相配套的问题,整体学习计划可以精确到月份,不要过于细致。进一步的安排由阶段学习计划完成,应该详细列出每周的学习任务和进度。
2.学习资料的选择
很多考生特别关心学习资料的问题,往往准备了一大堆参考资料,由于考研的复习任务重、时间紧,很多资料根本没有太多的时间顾及,这样势必影响考生的心态。我们认为学习资料以精读为主,避免广而烂。在资料的准备上最重要的是教材、复习资料和真题。关于教材的选择,高等数学的教材虽然很多,然而内容大同小异,一般使用以前学习时的教材即可,也可考虑同济大学的那套教材,这套教材有代表性。教材的每个章节都配备了一定数量的练习题,在前两个复习阶段,考生应以教材上的习题为主,这些题目对于理解和把握高等数学的基本概念和原理极为重要;复习资料以陈文灯的《数学复习指南》有代表性,该书对高等数学的考试内容进行了归类,上面的题目有一定难度。这本书主要在第三个学习阶段使用。
3.考研辅导班的问题
为了应考,很多学校举办了高等数学的考研复习班,由于这些辅导班往往具有速成的特点,对考生来说是不适合的。大家都知道数学学习中最重要的莫过于坚实的基础,包括对定理公式的深入理解,对基本运算的熟练和高正确率,对最基本的一些解题方法的掌握和运用。学好高等数学不是一朝一夕的事,需要基础,需要日积月累,因而我们觉得数学辅导班没必要上。对于那些数学基础较差的考生来说,参加辅导班不会有什么收获,他们应该早做准备,可以考虑去低年级的课堂上旁听,稳步地扎扎实实地学,通过多次的反复,总会有新的收获和提高。
数学学习计划15
一、指导思想
以现代教育理念思想为指导,以校本培训为依托,加大课题研究力度,深入开展小学课堂教学素质化研究,加强对中青年教师的培养,从而形成一种教师积极探索,学生自主、合作的学习氛围,实现人人学习有价值的数学,人人在数学上得到发展。
二、工作目标
1、积极参加校外专家学者的讲座辅导。并认真听取、认真记、认真思考,通过专家的引领,密切结合自身教学实际,查找自身的不足。把专家学者的理论与自己的工作实际想结合,努力探讨研究教学工作,不断提升自身的业务水平。
2、充分利用现代教育技术的教育资源。学习一些先进的教育理念,教学技能。在接受新理念、新知识的同时,不断进行自我反思,吸取别人的长处,弥补自己的不足。查找自己教学中存在的问题,虚心听取别人的指教,积极开展学习研修,有针对性地解决教学中的一些实际问题。
3、积极参加学校组织的各项活动,积极投身于校本研修中去。坚持做到不迟到、不缺勤,认真听取主讲领导的讲座,并认真做好笔记,对每一个教研专题都要密切联系教学工作实际,撰写教研体会。不断提升自我的教研能力和业务水平。
4、在校本教研中,以《怎样进行分数应用题的教学》、《几何的初步认识》为内容进行组内研修。
5、积极开展教学研究活动。除参加学校组织的专家学者等讲座报告外,还应经常在教研组内组织听课、评课,组织组内教师积极开展校本教研活动。特别是要从自己工作的需要出发密切结合教学中的一些难点问题,有针对性的进行教学研究。以教研带动教学,以教学促进教研,真正形成教师之间互相学习,互相研究,互相促进的校本研修氛围。通过活动不断开拓自己的视野,提高自身的综合素质。
三、主要工作及措施
1、全面实施新课程标准,切实转变教育观念。组织广大教师进一步研读《数学课程标准》,把握其精神实质,以新课标指导平时的数学课堂教学和课题研修。
2、加大校本研修的力度,深入开展教学研究。
(1)、我组将按照“备课→上课→摩课→评课”的程式,开展一条龙教研活动,将自主探究型课堂教学研究成果应用于平时的课堂教学,以此来提高教育教学质量。
(2)、开展对年轻教师的`“传—帮—带”活动,安排经验丰富、精力充沛的教师与刚参加工作的年轻教师结成对子,促进年轻教师在听课、上课、评课中迅速成长。形成教学“一帮一”互动的模式,让它成为一个良性的循环。
(3)、教研组以叙事、反思为切入点,每位数学教师做到重视叙事的撰写、及时反思和善于反思,学期末每位教师交一份教案,出一份试卷,写遗篇教学反思后案例分析。
3、加大课题研究力度,努力提高教育科研水平。教研组将在原课题《新课程分数应用题教学模式的探究》的基础上继续研修,以新课程、新理念、新技术为内容,加强对该课题的理论学习,组织教师收集有关的素材,及时反思,撰写教育教学论文。每位年轻教师每学期要撰写一篇教学论文上交教科室。
4、扎实做好学科教研工作,将每学期的考核落实到实处。加强数学教研组教学的评价研究,并对表现优秀的教师给予表扬,认真对待学校每学期 “学习型教师”的评选。
【数学学习计划】相关文章:
数学学习计划03-24
【热门】数学学习计划05-04
数学学习计划【热门】04-05
【荐】数学学习计划04-05
【推荐】数学学习计划04-04
【精】数学学习计划04-04
【热】数学学习计划04-04
数学学习计划【荐】04-04
数学学习计划【热】04-04
数学学习计划【推荐】04-04