高中数学函数倍角公式一览

时间:2024-12-30 16:55:15 蔼媚 学人智库 我要投稿
  • 相关推荐

高中数学函数倍角公式一览

  在我们的学习时代,大家都背过各种知识点吧?知识点是指某个模块知识的重点、核心内容、关键部分。相信很多人都在为知识点发愁,下面是小编帮大家整理的高中数学函数倍角公式一览,供大家参考借鉴,希望可以帮助到有需要的朋友。

高中数学函数倍角公式一览

  高中数学函数倍角公式一览

  sin(A+B)=sinAcosB+cosAsinB

  sin(A-B)=sinAcosB-cosAsinB?

  cos(A+B)=cosAcosB-sinAsinB

  cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB)

  tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  cot(A+B)=(cotAcotB-1)/(cotB+cotA)?

  cot(A-B)=(cotAcotB+1)/(cotB-cotA)

  倍角公式

  Sin2A=2SinA?CosA

  Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

  tan2A=2tanA/1-tanA^2

  三倍角公式

  tan3a=tana·tan(π/3+a)·tan(π/3-a)

  和差化积

  sin(a)+sin(b)=2sin[(a+b)/2]cos[(a-b)/2]

  sin(a)-sin(b)=2cos[(a+b)/2]sin[(a-b)/2]

  cos(a)+cos(b)=2cos[(a+b)/2]cos[(a-b)/2]

  cos(a)-cos(b)=-2sin[(a+b)/2]sin[(a-b)/2]

  tanA+tanB=sin(A+B)/cosAcosB

  积化和差

  sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]

  cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]

  sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]

  cos(a)sin(b)=1/2*[sin(a+b)-sin(a-b)]

  诱导公式

  sin(-a)=-sin(a)

  cos(-a)=cos(a)

  sin(π/2-a)=cos(a)

  数学常用函数公式整合

  半角公式

  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

  cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

  sin^2(a/2)=(1-cos(a))/2

  cos^2(a/2)=(1+cos(a))/2

  tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

  三角和

  sin(α+β+γ)=sinαcosβcosγ+cosαsinβcosγ+cosαcosβsinγ-sinαsinβsinγ

  cos(α+β+γ)=cosαcosβcosγ-cosαsinβsinγ-sinαcosβsinγ-sinαsinβcosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ-tanαtanβtanγ)/(1-tanαtanβ-tanβtanγ-tanγtanα)

  某些数列前n项和

  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

  1+3+5+7+9+11+13+15+…+(2n-1)=n2

  2+4+6+8+10+12+14+…+(2n)=n(n+1)5

  1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

  1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4

  1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

  反三角函数主要是三个:

  y=arcsin(x),定义域[-1,1],值域[-π/2,π/2]图象用红色线条;

  y=arccos(x),定义域[-1,1],值域[0,π],图象用蓝色线条;

  y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用绿色线条;

  sin(arcsinx)=x,定义域[-1,1],值域[-1,1]arcsin(-x)=-arcsinx

  其他公式:

  三角函数其他公式

  arcsin(-x)=-arcsinx

  arccos(-x)=π-arccosx

  arctan(-x)=-arctanx

  arccot(-x)=π-arccotx

  arcsinx+arccosx=π/2=arctanx+arccotx

  sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)

  当x∈[—π/2,π/2]时,有arcsin(sinx)=x

  当x∈[0,π],arccos(cosx)=x

  x∈(—π/2,π/2),arctan(tanx)=x

  x∈(0,π),arccot(cotx)=x

  x〉0,arctanx=π/2-arctan1/x,arccotx类似

  若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)

《高中数学函数倍角公式一览.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【高中数学函数倍角公式一览】相关文章:

初中数学三角函数倍角公式08-27

数学三角函数倍角公式知识点12-26

高中数学公式汇总之三角函数公式专题09-13

关于高中数学《三角函数》公式总结10-05

高中数学三角函数公式规律大全11-13

高中数学三角形面积公式07-13

高中数学《三角函数的诱导公式》课件10-09

高中数学三角函数公式知识点08-22

高中数学公式10-15

高中数学函数倍角公式一览

  在我们的学习时代,大家都背过各种知识点吧?知识点是指某个模块知识的重点、核心内容、关键部分。相信很多人都在为知识点发愁,下面是小编帮大家整理的高中数学函数倍角公式一览,供大家参考借鉴,希望可以帮助到有需要的朋友。

高中数学函数倍角公式一览

  高中数学函数倍角公式一览

  sin(A+B)=sinAcosB+cosAsinB

  sin(A-B)=sinAcosB-cosAsinB?

  cos(A+B)=cosAcosB-sinAsinB

  cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB)

  tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  cot(A+B)=(cotAcotB-1)/(cotB+cotA)?

  cot(A-B)=(cotAcotB+1)/(cotB-cotA)

  倍角公式

  Sin2A=2SinA?CosA

  Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

  tan2A=2tanA/1-tanA^2

  三倍角公式

  tan3a=tana·tan(π/3+a)·tan(π/3-a)

  和差化积

  sin(a)+sin(b)=2sin[(a+b)/2]cos[(a-b)/2]

  sin(a)-sin(b)=2cos[(a+b)/2]sin[(a-b)/2]

  cos(a)+cos(b)=2cos[(a+b)/2]cos[(a-b)/2]

  cos(a)-cos(b)=-2sin[(a+b)/2]sin[(a-b)/2]

  tanA+tanB=sin(A+B)/cosAcosB

  积化和差

  sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]

  cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]

  sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]

  cos(a)sin(b)=1/2*[sin(a+b)-sin(a-b)]

  诱导公式

  sin(-a)=-sin(a)

  cos(-a)=cos(a)

  sin(π/2-a)=cos(a)

  数学常用函数公式整合

  半角公式

  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

  cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

  sin^2(a/2)=(1-cos(a))/2

  cos^2(a/2)=(1+cos(a))/2

  tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

  三角和

  sin(α+β+γ)=sinαcosβcosγ+cosαsinβcosγ+cosαcosβsinγ-sinαsinβsinγ

  cos(α+β+γ)=cosαcosβcosγ-cosαsinβsinγ-sinαcosβsinγ-sinαsinβcosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ-tanαtanβtanγ)/(1-tanαtanβ-tanβtanγ-tanγtanα)

  某些数列前n项和

  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

  1+3+5+7+9+11+13+15+…+(2n-1)=n2

  2+4+6+8+10+12+14+…+(2n)=n(n+1)5

  1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

  1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4

  1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

  反三角函数主要是三个:

  y=arcsin(x),定义域[-1,1],值域[-π/2,π/2]图象用红色线条;

  y=arccos(x),定义域[-1,1],值域[0,π],图象用蓝色线条;

  y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用绿色线条;

  sin(arcsinx)=x,定义域[-1,1],值域[-1,1]arcsin(-x)=-arcsinx

  其他公式:

  三角函数其他公式

  arcsin(-x)=-arcsinx

  arccos(-x)=π-arccosx

  arctan(-x)=-arctanx

  arccot(-x)=π-arccotx

  arcsinx+arccosx=π/2=arctanx+arccotx

  sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)

  当x∈[—π/2,π/2]时,有arcsin(sinx)=x

  当x∈[0,π],arccos(cosx)=x

  x∈(—π/2,π/2),arctan(tanx)=x

  x∈(0,π),arccot(cotx)=x

  x〉0,arctanx=π/2-arctan1/x,arccotx类似

  若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)