- 高中数学必修4教案 推荐度:
- 相关推荐
高中数学必修4教案
作为一名辛苦耕耘的教育工作者,编写教案是必不可少的,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。怎样写教案才更能起到其作用呢?下面是小编帮大家整理的高中数学必修4教案,仅供参考,希望能够帮助到大家。
高中数学必修4教案1
教学目标
1.理解平面向量的基本概念和几何表示、向量相等的含义;掌握向量加减法和数乘运算,掌握其几何意义;理解向量共线定理
2.了解向量的线性运算性质及其几何意义;会用向量的几何表示及其代数运算、三角形法则、平行四边形法则解决有关问题
教学重难点向量的有关概念与线性运算
教学过程设计(教法、学法、课练、作业)个人主页
一、知识回顾
1.下列算式中不正确的是( )
A. B
C D
2.已知正方形ABCD边长为1, , , 则 + + 的模=( )
A.0 B.3 C. D.
3.已知向量 , 满足: ,则 =( )
A.1 B. C. D.
4.在平行四边形ABCD中, , , ,M为BC的中点,则 = (用 , 表示)
二、例题讲解
例1设 是两个不共线的向量,已知 =2 + , = +3 , =2 - .若A,B,D三点共线,
求的值.
例2在梯形ABCD中,E,F分别是腰AB,DC的三等分点,且 , 求
例3设O是平面上一定点,A,B,C是平面上不共线的三点,动点P满足 , .求点P的轨迹,并判断P的'轨迹通过下述哪一定点:
①△ABC的外心; ②△ABC的内心;
③△ABC的重心; ④△ABC的垂心.
三、小结
四、训练练习
见练习纸
教后感
高中数学必修4教案2
教学准备
教学目标
一、知识与技能
(1)理解并掌握弧度制的定义;(2)领会弧度制定义的合理性;(3)掌握并运用弧度制表示的弧长公式、扇形面积公式;(4)熟练地进行角度制与弧度制的换算;(5)角的集合与实数集之间建立的一一对应关系、(6)使学生通过弧度制的学习,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系、
二、过程与方法
创设情境,引入弧度制度量角的大小,通过探究理解并掌握弧度制的定义,领会定义的合理性、根据弧度制的定义推导并运用弧长公式和扇形面积公式、以具体的实例学习角度制与弧度制的互化,能正确使用计算器、
三、情态与价值
通过本节的学习,使同学们掌握另一种度量角的单位制———弧度制,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系、角的概念推广以后,在弧度制下,角的集合与实数集之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应,为下一节学习三角函数做好准备、
教学重难点
重点:理解并掌握弧度制定义;熟练地进行角度制与弧度制地互化换算;弧度制的运用、
难点:理解弧度制定义,弧度制的运用、
教学工具
投影仪等
教学过程
一、创设情境,引入新课
师:有人问:海口到三亚有多远时,有人回答约250公里,但也有人回答约160英里,请问那一种回答是正确的?(已知1英里=1、6公里)
显然,两种回答都是正确的,但为什么会有不同的数值呢?那是因为所采用的度量制不同,一个是公里制,一个是英里制、他们的长度单位是不同的,但是,他们之间可以换算:1英里=1、6公里、
在角度的度量里面,也有类似的情况,一个是角度制,我们已经不再陌生,另外一个就是我们这节课要研究的角的另外一种度量制———弧度制、
二、讲解新课
1、角度制规定:将一个圆周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等、
弧度制是什么呢?1弧度是什么意思?一周是多少弧度?半周呢?直角等于多少弧度?弧度制与角度制之间如何换算?请看课本,自行解决上述问题、
2、弧度制的定义
长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1,或1弧度,或1(单位可以省略不写)、
(师生共同活动)探究:如图,半径为的圆的.圆心与原点重合,角的终边与轴的正半轴重合,交圆于点,终边与圆交于点、请完成表格、
我们知道,角有正负零角之分,它的弧度数也应该有正负零之分,如—π,—2π等等,一般地,正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定、
角的概念推广以后,在弧度制下,角的集合与实数集R之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应、
四、课堂小结
度数与弧度数的换算也可借助“计算器”《中学数学用表》进行;在具体运算时,“弧度”二字和单位符号“rad”可以省略如:3表示3rad sinp表示prad角的正弦应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系。
五、作业布置
作业:习题1、1 A组第7,8,9题、
课后小结
度数与弧度数的换算也可借助“计算器”《中学数学用表》进行;在具体运算时,“弧度”二字和单位符号“rad”可以省略如:3表示3rad sinp表示prad角的正弦应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系。
课后习题
作业:习题1、1 A组第7,8,9题、
板书
高中数学必修4教案3
教学准备
教学目标
1、知识与技能
(1)进一步理解表达式y=Asin(ωx+φ),掌握A、φ、ωx+φ的含义;(2)熟练掌握由的图象得到函数的图象的方法;(3)会由函数y=Asin(ωx+φ)的图像讨论其性质;(4)能解决一些综合性的问题。
2、过程与方法
通过具体例题和学生练习,使学生能正确作出函数y=Asin(ωx+φ)的图像;并根据图像求解关系性质的问题;讲解例题,总结方法,巩固练习。
3、情感态度与价值观
通过本节的学习,渗透数形结合的思想;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受数学的严谨性,培养学生逻辑思维的缜密性。
教学重难点
重点:函数y=Asin(ωx+φ)的图像,函数y=Asin(ωx+φ)的性质。
难点:各种性质的应用。
教学工具
投影仪
教学过程
【创设情境,揭示课题】
函数y=Asin(ωx+φ)的性质问题,是三角函数中的重要问题,是高中数学的重点内容,也是高考的热点,因为,函数y=Asin(ωx+φ)在我们的实际生活中可以找到很多模型,与我们的生活息息相关。
五、归纳整理,整体认识
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?
(2)在本节课的`学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
六、布置作业:习题1—7第4,5,6题、
课后小结
归纳整理,整体认识
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
课后习题
作业:习题1—7第4,5,6题、
【高中数学必修4教案】相关文章:
高中数学必修五教案4篇02-10
高中数学必修4教案3篇11-17
高中数学必修教案03-01
高中数学必修四教案04-06
高中数学必修五教案12-14
高中数学必修2教案12-16
高中数学必修一教案12-19
高中数学必修四教案(精华)10-18
人教版高中数学必修5教案12-29