一次初中数学函数教案

时间:2022-12-29 11:41:06 初中数学教案 我要投稿
  • 相关推荐

一次初中数学函数教案

  作为一名老师,有必要进行细致的教案准备工作,编写教案有利于我们科学、合理地支配课堂时间。那么什么样的教案才是好的呢?下面是小编整理的一次初中数学函数教案,欢迎大家借鉴与参考,希望对大家有所帮助。

一次初中数学函数教案

一次初中数学函数教案1

  1、教材分析

  (1)知识结构

  (2)重点、难点分析

  重点:使学生理解画“连接”图形的理论依据.它是本节内容的核心,也是今后在实际制图应用中的基础.

  难点:①对“连接”图形原理的理解.因为它是应用抽象知识来描述客观问题,学生常常因抽象思维能力较弱,而没有真正理解和掌握;②线段与弧、弧与弧连接时圆心位置的确定.

  2、教法建议

  (1)在 教学 中,组织学生寻找一些身边的有关“连接”的实际问题,画出比例图,既调动学生的积极性,培养了兴趣,又获得了知识;

  (2)在 教学 中,以“实际问题——概念引出——理解——实际应用”为主线,开展在 教师 组织下,以学生为主体,活动式 教学 . 相切在作图中的应用(一)

  教学 目标:

  (1)理解线段与弧、弧与弧连接的概念及连接的原理;

  (2)通过对 “连接”等概念的 教学 ,培养学生的理解能力;

  (3)通过线段与弧的连接,圆弧与圆弧的连接,培养学生的作图能力;

  (4)“渗透”世界上很多事物是互相联系着的.,并且在一定条件下相互转化.

  教学 重点:

  正确理解连接的原理,初步掌握线段与圆弧连接、圆弧与圆弧连接的实质,会进行各种连接.

  教学 难点:

  连接原理的正确理解和作图时圆心、半径的确定

  教学 活动设计:

  (一)实际问题引出概念

  我们在生活中常见到一些机器零件,它的边缘是圆滑的,我们最熟悉的操场上的跑道,它的跑道线也是很圆滑的.

  想一想 :跑道线是怎样的线组成的

  画一画: 跑道的大致图形.

  指导学生发现线线的位置关系,引出连接的有关概念:

  1、由一条线(线段或圆弧)平滑地过渡到另一条线上,这种平滑地过渡,称圆弧连接,简称连接.

  2、连接时,线段与圆弧、圆弧与圆弧在连接处相切.

  3、外连接、内连接.

  组织学生阅读理解教材内容

  (二)深刻理解概念

  “连接”是“平滑地过渡”,怎样算“平滑“像下面图中,实线画出的线段和圆弧,圆弧和圆弧,虽然也有相切的关系,但它们不是连接.

  理解:线与线连接有两个必备条件:①连接时,线段与圆弧,圆弧与圆弧在连接处相切.②线段与圆弧应分居在圆心与切点所在直线的两侧;圆弧与圆弧分居在连心线的两侧,二者缺一不可.

  (三)圆弧与线段、圆弧与圆弧连接图形的画法

  例1 : 已知:线段AB和r(如图).

  求作: ,使它的半径等于r,,并且在点A与线段AB连接.

  作法:1、过点A作直线PA⊥AB.

  2、在射线AP取AO=r.

  3、以O为圆心,r为半径作 ,使AB、 在OA的两侧.

  就是所求作的弧.

  说明 :画圆弧与线段的连接,主要运用了切线的性质定理的推论2:经过切点且垂直于切线的直线必过圆心,找出了圆心,圆弧也就不难画了.

  例2 、 已知:如图, 的半径为R 1 ,圆心为O 1 ;线段R 2 .

  求作:半径为R 2 的 ,使 与 在点A外连接.

  作法:1、连结O 1 A,并且延长到点O 2 ,使O 1 O 2 = R 1 + R 2 .

  2、以O 2 为圆心,O 1 O 2 为半径作 ,使 与 在的两侧.

  就是所求作的弧.

  说明:画圆弧与圆弧的连接,主要运用“两圆相切,切点一定在连心线上”这个结论.

  练习题:P148练习,1、2.

  (三)小结

  主要内容:

  1、什么是连接什么是外连接什么是内连接

  2、任何一种连接,其实质就是两线相切,在切点处相连接,是切点两侧的线段和圆弧或圆弧与圆弧相连接.

  3、对于给出的题目,画出连接图形关键在于确定圆心.

  (四)作业

  教材P151习题A组16.

  课外题:画一个生活中的有关连接图形的比例图,下节课展示.

一次初中数学函数教案2

  教学 目标:

  (1)进一步理解连接等概念及连接的原理;

  (2)进一步培养学生的作图能力;

  (3)通过对作图题的分析,培养学生的分析问题能力.

  教学 重点:

  深刻理解连接的意义,能对具体图形熟练地进行弧连接.

  教学 难点:

  作图时圆心、半径的确定

  教学 活动设计:

  (一)概念复习与理解

  练习1、下列命题中,正确的`是(C)

  (A)将一段弧和一条线段连到一起的图形叫连接;

  (B)一段给出半径的圆弧可以和一直线连接;

  (C)两段给出不等半径的圆弧可以用内、外两种连接方式连接;

  (D)两段圆弧内切就是内连接.

  练习2、内、外连接的区别是( C )

  (A)内连接两弧在连心线同侧,而外连接两弧在连心线两侧;

  (B)内连接两弧在切点同旁,外连接两弧在切点两旁;

  (C)内连接是内切两圆弧连接,外连接是外切两圆弧连接;

  (D)内连接是外切两圆弧连接,外连接是内切两圆弧连接.

  (二)连接图形的应用

  例3 、 (教材P148)如图,要把零件中直角A加工成半径为15mm的圆角(即用一条半径为15mm的圆弧连接边AB与边AC)在图上画出这条圆弧.

  分析 :圆弧的半径已知,要画出这条圆弧,只要求出它的圆心即可.因为圆弧要与AB和AC都相切。所以圆心到边AB和AC的距离都等于15mm,实际上四边形AEOP是正方形,它的顶点O在∠CAB的平分线上.

  (参看教材P148)

  充分给学生时间让学生自己分析、研究、写出画法,画出图形.

  练习:把两边长分别为8cm和5cm的矩形的4个直角改画成圆角,使圆弧的半径等于1cm.

  (三)展示作品

  对上节课课外作业中较好的连接图形,展示.既提高学生的学习积极性,又激发学生在 教学 过程 中的参与热情.

  (四)小结

  1、连接在实际生活中的应用,可以改变物体的表面形状.

  2、任何一种连接的问题经过分析后都能转化为基本图形:“线段与弧的连接;圆弧与圆弧的内连接;圆弧与圆弧的外连接.

  3、连接的关键是确定所求圆弧所在圆的圆心.

  4、线段可在一点处与两条弧同时连接.

  (五)作业 教材P154中18,B组2.

  探究活动

  问题:如图三圆两两相切,切点分别为C、O、D,与半圆O分别切于点A、E、B,请你找出图中除线段AB和弧以外的6条从A点平滑过渡到B点且没有重复弧的路线,并指出在经过个点处是什么连接(内连接、外连接).

一次初中数学函数教案3

  一、目的要求

  1、使学生初步理解一次函数与正比例函数的概念。

  2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。

  二、内容分析

  1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。

  2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的`特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。

  3、“函数及其图象”这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。

  三、教学过程

  复习提问:

  1、什么是函数?

  2、函数有哪几种表示方法?

  3、举出几个函数的例子。

  新课讲解:

  可以选用提问时学生举出的例子,也可以直接采用教科书中的四个函数的例子。然后让学生观察这些例子(实际上均是一次函数的解析式),y=x,s=3t等。观察时,可以按下列问题引导学生思考:

  (1)这些式子表示的是什么关系?(在学生明确这些式子表示函数关系后,可指出,这是函数。)

  (2)这些函数中的自变量是什么?函数是什么?(在学生分清后,可指出,式子中等号左边的y与s是函数,等号右边是一个代数式,其中的字母x与t是自变量。)

  (3)在这些函数式中,表示函数的自变量的式子,分别是关于自变量的什么式呢?(这题牵扯到有关整式的基本概念,表示函数的自变量的式子也就是等号右边的式子,都是关于自变量的一次式。)

  (4)x的一次式的一般形式是什么?(结合一元一次方程的有关知识,可以知道,x的一次式是kx+b(k≠0)的形式。)

  由以上的层层设问,最后给出一次函数的定义。

  一般地,如果y=kx+b(k,b是常数,k≠0)那么,y叫做x的一次函数。

  对这个定义,要注意:

  (1)x是变量,k,b是常数;

  (2)k≠0 (当k=0时,式子变形成y=b的形式。b是x的0次式,y=b叫做常数函数,这点,不一定向学生讲述。)

  由一次函数出发,当常数b=0时,一次函数kx+b(k≠0)就成为:y=kx(k是常数,k≠0)我们把这样的函数叫正比例函数。

  在讲述正比例函数时,首先,要注意适当复习小学学过的正比例关系,小学数学是这样陈述的:

  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

  写成式子是(一定)

  需指出,小学因为没有学过负数,实际的例子都是k>0的例子,对于正比例函数,k也为负数。

  其次,要注意引导学生找出一次函数与正比例函数之间的关系:正比例函数是特殊的一次函数。

  课堂练习:

  教科书13、4节练习第1题.

【一次初中数学函数教案】相关文章:

初中数学《变量与函数》教案01-04

初中数学函数专题总结11-22

《一次函数》教案12-16

一次函数的的教案12-17

数学教案:函数与方程02-25

函数数学教案11-27

数学《指数与指数函数》教案02-25

《一次函数解析式》教案12-16

《一次函数》教案,课件,试题12-16