相似三角形判定定理的证明课件

时间:2021-11-05 19:29:30 证明 我要投稿

相似三角形判定定理的证明课件

第23章 图形的相似

相似三角形判定定理的证明课件

第5节 相似三角形判定

WY

复习回顾

全等判定:

(对应)边角

(6组量) 判定方法 角边角 角角边 边边边

边角边

1.两角分别相等

三角分别

相等, 三2.三边成比例 3.两边成比例且

夹角相等

4.两边成比例且

其中一边的对角相等 边成比例

判定定理一: 两角分别相等的两个三角形相似。

证明:在ΔABC的边AB、AC上,分别截取AD=A/B/,AE=A/C/,连结DE。 ∵ AD=A/B/,∠A=∠A/,AE=A/C/

∴ ΔA DE≌ΔA/B/C/,

∴ ∠ADE=∠B/,

又∵ ∠B/=∠B,

∴ ∠ADE=∠B,

∴ DE//BC,

∴ ΔADE∽ΔABC。 A A/ E

∴ ΔA/B/C/∽ΔABC B C B/ C/ 判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。可以简单说成:“有两个角对应相等的两个三角形相似。”

证明:在ΔABC的`边AB、AC上,分别截取AD=A/B/,AE=A/C/,连结DE。

∵ AD=A/B/,∠A=∠A/,AE=A/C/ ∴ ΔA DE≌ΔA/B/C/, ∴ ∠ADE=∠B/, 又∵ ∠B/=∠B, ∴ ∠ADE=∠B, ∴ DE//BC, ∴ ΔADE∽ΔABC。

A

A/

E

∴ ΔA/B/C/∽ΔABC

B

C B/ C/

判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。可以简单说成:“

有两个角对应相等的两个

三角形相似。”

判定定理二:两边对应成比例且夹角相等的

两个 三角形相似.

判定定理三:三边成比例的两个三角形相似

?如图,△ ABC与△ A′B′C′相似吗? ?你用什么方法来支持你的判断?

AB?8 ,BC? ,AC?2 ;A?B??4,B?C??,A?C??2;

ABACBC2?????2.A?B?A?C?B?C?1

有一对 等角,找

另一对等角---用判定定理1 夹边成比例---用判定定理2 夹角相等----用判定定理2

有两边对应 边成比例,

第三边也成比例---用判定定理3

有一对直角---用直角三角形 相似的判定定理

B

D C B

D E

D C

C

B

B C

C

B

D

D

F

提示:易知?B1A1C1??B2A2C2

???90?45

由勾股定理得

A1B1?22,A1C1?4A2B2?2,A2C2?2

ABA2B2

??

ACA2C2

?△A1B1C1∽△A2B2C2

练习提高

思路分析: ∽ 先证明

先证明

上面的思路分析可以用一段顺口溜来表述:

证等积,化等比;

横找竖找定相似. 不相似,别着急; 等线等比来代替. ……

如何证明

△ABD∽△ACB

易知∠A是△ABD和△ACB 根据两角分别相等的 的公共角,

两个三角形相似,只要再证明一对角相等即可。观察图形,猜想 ∠3=∠C ?

1

2

∠3=∠C

∠3=∠C ∠A= ∠A

△ABD∽△ACB

1

2

AC

?

AB

AB?AD?AC

AE=AB

AE2=AD·AC

2

①当∠1=∠C时

②当∠1=∠A时

(2)已知AD=3,BD=5,AE=4,求AC的长 两角分别相等的两个三角形相似(2) ∵△ADE∽△ACB (已证)

ADAE??ACAB

34??,解得:ACAC3?5

?6

2)已知AD=5,BD=2, 求AC的长

两角分别相等的两个三角形相似(2) ∵△ACD∽△ABC (已证)

ACAD

??ABAC

AC5??解得:AC??35(负值舍去)5?2AC

相似三角形的常见类型

【相似三角形判定定理的证明课件】相关文章:

相似三角形判定定理的证明07-18

相似三角形判定定理07-18

相似三角形的判定定理07-18

相似三角形的判定定理及练习07-18

相似三角形的判定定理教学设计[1]07-18

相似三角形定理与推论07-18

三角形相似的判定 习题04-24

全等三角形的判定定理07-27

《相似三角形的判定》教学反思范文04-15