相似三角形判定定理的证明课件
第23章 图形的相似
第5节 相似三角形判定
WY
复习回顾
全等判定:
(对应)边角
(6组量) 判定方法 角边角 角角边 边边边
边角边
1.两角分别相等
三角分别
相等, 三2.三边成比例 3.两边成比例且
夹角相等
4.两边成比例且
其中一边的对角相等 边成比例
判定定理一: 两角分别相等的两个三角形相似。
证明:在ΔABC的边AB、AC上,分别截取AD=A/B/,AE=A/C/,连结DE。 ∵ AD=A/B/,∠A=∠A/,AE=A/C/
∴ ΔA DE≌ΔA/B/C/,
∴ ∠ADE=∠B/,
又∵ ∠B/=∠B,
∴ ∠ADE=∠B,
∴ DE//BC,
∴ ΔADE∽ΔABC。 A A/ E
∴ ΔA/B/C/∽ΔABC B C B/ C/ 判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。可以简单说成:“有两个角对应相等的两个三角形相似。”
证明:在ΔABC的`边AB、AC上,分别截取AD=A/B/,AE=A/C/,连结DE。
∵ AD=A/B/,∠A=∠A/,AE=A/C/ ∴ ΔA DE≌ΔA/B/C/, ∴ ∠ADE=∠B/, 又∵ ∠B/=∠B, ∴ ∠ADE=∠B, ∴ DE//BC, ∴ ΔADE∽ΔABC。
A
A/
E
∴ ΔA/B/C/∽ΔABC
B
C B/ C/
判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。可以简单说成:“
有两个角对应相等的两个
三角形相似。”
判定定理二:两边对应成比例且夹角相等的
两个 三角形相似.
判定定理三:三边成比例的两个三角形相似
?如图,△ ABC与△ A′B′C′相似吗? ?你用什么方法来支持你的判断?
AB?8 ,BC? ,AC?2 ;A?B??4,B?C??,A?C??2;
ABACBC2?????2.A?B?A?C?B?C?1
有一对 等角,找
另一对等角---用判定定理1 夹边成比例---用判定定理2 夹角相等----用判定定理2
有两边对应 边成比例,
第三边也成比例---用判定定理3
找
有一对直角---用直角三角形 相似的判定定理
B
D C B
D E
D C
C
B
B C
C
B
D
D
F
提示:易知?B1A1C1??B2A2C2
???90?45
由勾股定理得
A1B1?22,A1C1?4A2B2?2,A2C2?2
ABA2B2
??
ACA2C2
?△A1B1C1∽△A2B2C2
练习提高
思路分析: ∽ 先证明
先证明
上面的思路分析可以用一段顺口溜来表述:
证等积,化等比;
横找竖找定相似. 不相似,别着急; 等线等比来代替. ……
如何证明
△ABD∽△ACB
易知∠A是△ABD和△ACB 根据两角分别相等的 的公共角,
两个三角形相似,只要再证明一对角相等即可。观察图形,猜想 ∠3=∠C ?
1
2
∠3=∠C
∠3=∠C ∠A= ∠A
△ABD∽△ACB
1
2
AC
?
AB
AB?AD?AC
AE=AB
AE2=AD·AC
2
①当∠1=∠C时
②当∠1=∠A时
(2)已知AD=3,BD=5,AE=4,求AC的长 两角分别相等的两个三角形相似(2) ∵△ADE∽△ACB (已证)
ADAE??ACAB
34??,解得:ACAC3?5
?6
2)已知AD=5,BD=2, 求AC的长
两角分别相等的两个三角形相似(2) ∵△ACD∽△ABC (已证)
ACAD
??ABAC
AC5??解得:AC??35(负值舍去)5?2AC
相似三角形的常见类型
【相似三角形判定定理的证明课件】相关文章:
相似三角形判定定理的证明07-18
相似三角形判定定理07-18
相似三角形的判定定理07-18
相似三角形的判定定理及练习07-18
相似三角形的判定定理教学设计[1]07-18
相似三角形定理与推论07-18
三角形相似的判定 习题04-24
全等三角形的判定定理07-27
《相似三角形的判定》教学反思范文04-15